Skip to main content

Advertisement

Log in

Synthesis of Ag/Fe2O3 nanocomposite from essential oil of ginger via green method and its bactericidal activity

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

A Correction to this article was published on 07 October 2022

This article has been updated

Abstract

Bio-synthesized nanoparticles (NPs) having reduced chemical toxicity have been focused globally and become essential component of nanotechnology recently. In the study reported here, silver/iron oxide nanocomposite (Ag/Fe2O3) was biosynthesized from ginger oil via a green, economic, and eco-friendly strategy. The biosynthesized Ag/Fe2O3 were characterized using ultraviolet visible (UV–Vis), Fourier transform infrared (FTIR), X-ray diffraction (XRD), transmission electron microscope (TEM), dynamic light scattering (DLS), and scanning electron microscope/energy-dispersive X-ray (SEM–EDX) analysis. The particulates showed a spherical-morphology and had sizes between 44 and 200 nm. Ag/Fe2O3 FTIR analysis revealed functional groups that were analogous to organic metabolites, which reduced and stabilized the nanocomposite. Antimicrobial efficacy of the biosynthesized Ag/Fe2O3 against bacterial pathogens was assessed. In addition, Ag/Fe2O3 exhibited broad spectrum activities against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa with inhibition zones 22.6 ± 1.15, 21.1 ± 1.44, 18 ± 1 and 17.4 ± 2.67 mm, respectively. The Ag/Fe2O3 showed promising antibacterial action against human bacterial pathogens, making them useful in the medical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

Change history

References

  1. Hamad A, Khashan KS, Hadi A (2020) Silver nanoparticles and silver ions as potential antibacterial agents. J Inorg Organomet Polym Mater 30(12):4811–4828. https://doi.org/10.1007/s10904-020-01744-x

    Article  Google Scholar 

  2. Salem SS, EL-Belely EF, Niedbała G, Alnoman MM, Hassan SE-D, Eid AM, Shaheen TI, Elkelish A, Fouda A (2020) Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials 10(10):2082. https://doi.org/10.3390/nano10102082

  3. Alsharif SM, Salem SS, Abdel-Rahman MA, Fouda A, Eid AM, El-Din Hassan S, Awad MA, Mohamed AA (2020) Multifunctional properties of spherical silver nanoparticles fabricated by different microbial taxa. Heliyon 6(5):e03943. https://doi.org/10.1016/j.heliyon.2020.e03943

  4. Sharaf MH, Nagiub AM, Salem SS, Kalaba MH, El Fakharany EM, Abd El-Wahab H (2022) A new strategy to integrate silver nanowires with waterborne coating to improve their antimicrobial and antiviral properties. Pigment Resin Technol. https://doi.org/10.1108/PRT-12-2021-0146

  5. Salem SS, Fouda A (2021) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res 199(1):344–370. https://doi.org/10.1007/s12011-020-02138-3

    Article  Google Scholar 

  6. Salem SS, Ali OM, Reyad AM, Abd-Elsalam KA, Hashem AH (2022) Pseudomonas indica-mediated silver nanoparticles: antifungal and antioxidant biogenic tool for suppressing mucormycosis fungi. J Fungi 8(2). https://doi.org/10.3390/jof8020126

  7. Shehabeldine AM, Salem SS, Ali OM, Abd-Elsalam KA, Elkady FM, Hashem AH (2022) Multifunctional silver nanoparticles based on chitosan: antibacterial, antibiofilm, antifungal, antioxidant, and wound-healing activities. J Fungi 8(6). https://doi.org/10.3390/jof8060612

  8. Jo Y-K, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043. https://doi.org/10.1094/pdis-93-10-1037

    Article  Google Scholar 

  9. Razavi R, Amiri M, Alshamsi HA, Eslaminejad T, Salavati-Niasari M (2021) Green synthesis of Ag nanoparticles in oil-in-water nano-emulsion and evaluation of their antibacterial and cytotoxic properties as well as molecular docking. Arab J Chem 14(9):103323. https://doi.org/10.1016/j.arabjc.2021.103323

    Article  Google Scholar 

  10. Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S, Das S, Dey SK, Das D, Roy S (2017) Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 10(6):862–876. https://doi.org/10.1016/j.arabjc.2015.08.008

    Article  Google Scholar 

  11. Salem SS (2022) Baker’s yeast-mediated silver nanoparticles: characterisation and antimicrobial biogenic tool for suppressing pathogenic microbes. BioNanoScience. https://doi.org/10.1007/s12668-022-01026-5

  12. Dasgupta N, Ramalingam C (2016) Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation. Environ Chem Lett 14(4):477–485. https://doi.org/10.1007/s10311-016-0583-1

    Article  Google Scholar 

  13. Salem SS, Hashem AH, Sallam A-AM, Doghish AS, Al-Askar AA, Arishi AA, Shehabeldine AM (2022) Synthesis of silver nanocomposite based on carboxymethyl cellulose: antibacterial antifungal and anticancer activities. Polymers 14(16):3352. https://doi.org/10.3390/polym14163352

  14. Gold K, Slay B, Knackstedt M, Gaharwar AK (2018) Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv Ther 1(3):1700033. https://doi.org/10.1002/adtp.201700033

    Article  Google Scholar 

  15. Salem SS, Hammad EN, Mohamed AA, El-Dougdoug W (2023) A comprehensive review of nanomaterials: types, synthesis, characterization, and applications. Biointerface Res Appl Chem 13(1). https://doi.org/10.33263/BRIAC131.041

  16. Rashki S, Abbas Alshamsi H, Amiri O, Safardoust-Hojaghan H, Salavati-Niasari M, Nazari-Alam A, Khaledi A (2021) Eco-friendly green synthesis of ZnO/GQD nanocomposites using Protoparmeliopsis muralis extract for their antibacterial and antibiofilm activity. J Mol Liq 335:116195. https://doi.org/10.1016/j.molliq.2021.116195

    Article  Google Scholar 

  17. Yousefi SR, Sobhani A, Alshamsi HA, Salavati-Niasari M (2021) Green sonochemical synthesis of BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. RSC Adv 11(19):11500–11512. https://doi.org/10.1039/D0RA10288A

    Article  Google Scholar 

  18. Heidari-Asil SA, Zinatloo-Ajabshir S, Alshamsi HA, Al-Nayili A, Yousif QA, Salavati-Niasari M (2022) Magnetically recyclable ZnCo2O4/Co3O4 nano-photocatalyst: green combustion preparation, characterization and its application for enhanced degradation of contaminated water under sunlight. Int J Hydrogen Energy 47(38):16852–16861. https://doi.org/10.1016/j.ijhydene.2022.03.157

    Article  Google Scholar 

  19. Hammad EN, Salem SS, Zohair MM, Mohamed AA, El-Dougdoug W (2021) Purpureocillium lilacinum mediated biosynthesis copper oxide nanoparticles with promising removal of dyes. Biointerface Res Appl Chem 12(2):1397–1404. https://doi.org/10.33263/BRIAC122.13971404

  20. Dara M, Hassanpour M, Alshamsi HA, Baladi M, Salavati-Niasari M (2021) Green sol–gel auto combustion synthesis and characterization of double perovskite Tb2ZnMnO6 nanoparticles and a brief study of photocatalytic activity. RSC Adv 11(14):8228–8238. https://doi.org/10.1039/D0RA10400K

    Article  Google Scholar 

  21. Salavati-Niasari M, Davar F (2006) In situ one-pot template synthesis (IOPTS) and characterization of copper(II) complexes of 14-membered hexaaza macrocyclic ligand “3,10-dialkyl-dibenzo-1,3,5,8,10,12-hexaazacyclotetradecane.” Inorg Chem Commun 9(2):175–179. https://doi.org/10.1016/j.inoche.2005.10.028

    Article  Google Scholar 

  22. Davar F, Salavati-Niasari M, Fereshteh Z (2010) Synthesis and characterization of SnO2 nanoparticles by thermal decomposition of new inorganic precursor. J Alloy Compd 496(1):638–643. https://doi.org/10.1016/j.jallcom.2010.02.152

    Article  Google Scholar 

  23. Hashem AH, Shehabeldine AM, Ali OM, Salem SS (2022) Synthesis of chitosan-based gold nanoparticles: antimicrobial and wound-healing activities. Polymers 14(11). https://doi.org/10.3390/polym14112293

  24. Salem SS, Badawy MSEM, Al-Askar AA, Arishi AA, Elkady FM, Hashem AH (2022) Green biosynthesis of selenium nanoparticles using orange peel waste: characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life 12(6). https://doi.org/10.3390/life12060893

  25. Hashem AH, Salem SS (2022) Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: antimicrobial and anticancer activity. Biotechnol J 17(2). https://doi.org/10.1002/biot.202100432

  26. Monsef R, Salavati-Niasari M (2021) Hydrothermal architecture of Cu5V2O10 nanostructures as new electro-sensing catalysts for voltammetric quantification of mefenamic acid in pharmaceuticals and biological samples. Biosens Bioelectron 178:113017. https://doi.org/10.1016/j.bios.2021.113017

    Article  Google Scholar 

  27. Zinatloo-Ajabshir S, Mortazavi-Derazkola S, Salavati-Niasari M (2018) Nd2O3-SiO2 nanocomposites: a simple sonochemical preparation, characterization and photocatalytic activity. Ultrason Sonochem 42:171–182. https://doi.org/10.1016/j.ultsonch.2017.11.026

    Article  Google Scholar 

  28. Salem SS (2022) Bio-fabrication of selenium nanoparticles using baker’s yeast extract and its antimicrobial efficacy on food borne pathogens. Appl Biochem Biotechnol 194(5):1898–1910. https://doi.org/10.1007/s12010-022-03809-8

  29. Zinatloo-Ajabshir S, Morassaei MS, Amiri O, Salavati-Niasari M, Foong LK (2020) Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceramics Int 46(11, Part A):17186–17196. https://doi.org/10.1016/j.ceramint.2020.03.014

  30. Motahari F, Mozdianfard MR, Salavati-Niasari M (2015) Synthesis and adsorption studies of NiO nanoparticles in the presence of H2acacen ligand, for removing Rhodamine B in wastewater treatment. Process Saf Environ Prot 93:282–292. https://doi.org/10.1016/j.psep.2014.06.006

    Article  Google Scholar 

  31. Elsawy MM, Faheim AA, Salem SS, Owda ME, Abd El-Wahab ZH, Abd El-Wahab H (2021) Cu (II), Zn (II), and Ce (III) metal complexes as antimicrobial pigments for surface coating and flexographic ink. Appl Organomet Chem 35(5). https://doi.org/10.1002/aoc.6196

  32. Abdelmoneim HEM, Wassel MA, Elfeky AS, Bendary SH, Awad MA, Salem SS, Mahmoud SA (2022) Multiple applications of CdS/TiO2 nanocomposites synthesized via microwave-assisted sol–gel. J Cluster Sci 33(3):1119–1128. https://doi.org/10.1007/s10876-021-02041-4

    Article  Google Scholar 

  33. Zhang T, Guan L, Li C, Zhao J, Wang M, Peng L, Wang J, Lin Y (2018) Cost-effective and facile preparation of Fe2O3 nanoparticles decorated n-doped mesoporous carbon materials: transforming mulberry leaf into a highly active electrocatalyst for oxygen reduction reactions. Catalysts 8(3):101

    Article  Google Scholar 

  34. Hammad EN, Salem SS, Mohamed AA, El-Dougdoug W (2022) Environmental impacts of ecofriendly iron oxide nanoparticles on dyes removal and antibacterial activity. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-022-04105-1

    Article  Google Scholar 

  35. Narasimharao K, Al-Shehri A, Al-Thabaiti S (2015) Porous Ag–Fe2O3 nanocomposite catalysts for the oxidation of carbon monoxide. Appl Catal A 505:431–440

    Article  Google Scholar 

  36. Zinatloo-Ajabshir S, Salavati-Niasari M (2019) Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos B Eng 174:106930. https://doi.org/10.1016/j.compositesb.2019.106930

    Article  Google Scholar 

  37. Monsef R, Ghiyasiyan-Arani M, Salavati-Niasari M (2021) Design of magnetically recyclable ternary Fe2O3/EuVO4/g-C3N4 nanocomposites for photocatalytic and electrochemical hydrogen storage. ACS Applied Energy Materials 4(1):680–695. https://doi.org/10.1021/acsaem.0c02557

    Article  Google Scholar 

  38. Ahmadian-Fard-Fini S, Ghanbari D, Amiri O, Salavati-Niasari M (2020) Electro-spinning of cellulose acetate nanofibers/Fe/carbon dot as photoluminescence sensor for mercury (II) and lead (II) ions. Carbohyd Polym 229:115428. https://doi.org/10.1016/j.carbpol.2019.115428

    Article  Google Scholar 

  39. Amiri M, Salavati-Niasari M, Pardakhty A, Ahmadi M, Akbari A (2017) Caffeine: a novel green precursor for synthesis of magnetic CoFe2O4 nanoparticles and pH-sensitive magnetic alginate beads for drug delivery. Mater Sci Eng, C 76:1085–1093. https://doi.org/10.1016/j.msec.2017.03.208

    Article  Google Scholar 

  40. Saied E, Salem SS, Al-Askar AA, Elkady FM, Arishi AA, Hashem AH (2022) Mycosynthesis of hematite (α-Fe2O3) nanoparticles using Aspergillus niger and their antimicrobial and photocatalytic activities. Bioengineering 9(8):397. https://doi.org/10.3390/bioengineering9080397

  41. Zhang S, Ren F, Wu W, Zhou J, Sun L, Xiao X, Jiang C (2014) Size effects of Ag nanoparticles on plasmon-induced enhancement of photocatalysis of Ag-α-Fe2O3 nanocomposites. J Colloid Interface Sci 427:29–34

    Article  Google Scholar 

  42. Kaloti M, Kumar A, Navani NK (2015) Synthesis of glucose-mediated Ag–γ-Fe2O3 multifunctional nanocomposites in aqueous medium – a kinetic analysis of their catalytic activity for 4-nitrophenol reduction. Green Chem 17(10):4786–4799. https://doi.org/10.1039/C5GC00941C

    Article  Google Scholar 

  43. Chen Y, Gao N, Jiang J (2013) Surface matters: enhanced bactericidal property of core–shell Ag–Fe2O3 nanostructures to their heteromer counterparts from one-pot synthesis. Small 9(19):3242–3246. https://doi.org/10.1002/smll.201300543

    Article  Google Scholar 

  44. Saha A, Basiruddin SK, Pradhan N, Jana NR (2010) Ligand exchange approach in deriving magnetic−fluorescent and magnetic−plasmonic hybrid nanoparticle. Langmuir 26(6):4351–4356. https://doi.org/10.1021/la903428r

    Article  Google Scholar 

  45. Tomke PD, Rathod VK (2020) Facile fabrication of silver on magnetic nanocomposite (Fe3O4@Chitosan –AgNP nanocomposite) for catalytic reduction of anthropogenic pollutant and agricultural pathogens. Int J Biol Macromol 149:989–999. https://doi.org/10.1016/j.ijbiomac.2020.01.183

    Article  Google Scholar 

  46. Alangari A, Alqahtani MS, Mateen A, Kalam MA, Alshememry A, Ali R, Kazi M, AlGhamdi KM, Syed R (2022) Iron oxide nanoparticles: preparation, characterization, and assessment of antimicrobial and anticancer activity. Adsorpt Sci Technol 2022:1562051. https://doi.org/10.1155/2022/1562051

    Article  Google Scholar 

  47. Kaloti M, Kumar A (2016) Synthesis of chitosan-mediated silver coated γ-Fe2O3 (Ag−γ-Fe2O3@Cs) superparamagnetic binary nanohybrids for multifunctional applications. J Phys Chem C 120(31):17627–17644. https://doi.org/10.1021/acs.jpcc.6b05851

    Article  Google Scholar 

  48. Yousfi F, Abrigach F, Petrovic JD, Sokovic M, Ramdani M (2021) Phytochemical screening and evaluation of the antioxidant and antibacterial potential of Zingiber officinale extracts. S Afr J Bot 142:433–440. https://doi.org/10.1016/j.sajb.2021.07.010

    Article  Google Scholar 

  49. Beristain-Bauza SDC, Hernández-Carranza P, Cid-Pérez TS, Ávila-Sosa R, Ruiz-López II, Ochoa-Velasco CE (2019) Antimicrobial activity of ginger (Zingiber officinale) and its application in food products. Food Rev Intl 35(5):407–426. https://doi.org/10.1080/87559129.2019.1573829

    Article  Google Scholar 

  50. El Fawal G, Abu-Serie MM, Omar AM (2022) Polyvinylidene fluoride/ginger oil nanofiber scaffold for anticancer treatment: preparation, characterization, and biological evaluation. Polym Bull. https://doi.org/10.1007/s00289-022-04338-4

    Article  Google Scholar 

  51. Pagano E, Souto EB, Durazzo A, Sharifi-Rad J, Lucarini M, Souto SB, Salehi B, Zam W, Montanaro V, Lucariello G, Izzo AA, Santini A, Romano B (2021) Ginger (Zingiber officinale Roscoe) as a nutraceutical: focus on the metabolic, analgesic, and antiinflammatory effects. Phytother Res 35(5):2403–2417. https://doi.org/10.1002/ptr.6964

    Article  Google Scholar 

  52. Ogino M, Yakushiji K, Suzuki H, Shiokawa K, Kikuchi H, Seto Y, Sato H, Onoue S (2018) Enhanced pharmacokinetic behavior and hepatoprotective function of ginger extract-loaded supersaturable self-emulsifying drug delivery systems. J Funct Foods 40:156–163. https://doi.org/10.1016/j.jff.2017.08.035

    Article  Google Scholar 

  53. Pawin B, Suksathan R, Puangpradab R, Rachkeeree A, Kantadoung K (2022) Phytochemical analysis, antioxidant, and anticholinesterase activities of ethanolic extracts from five ginger plants in Thailand. Nat Prod Res 1–5. https://doi.org/10.1080/14786419.2022.2071886

  54. Gunasena MT, Rafi A, MohdZobir SA, Hussein MZ, Ali A, Kutawa AB, Abdul Wahab MA, Sulaiman MR, Adzmi F, Ahmad K (2022) Phytochemicals profiling, antimicrobial activity and mechanism of action of essential oil extracted from ginger (Zingiber officinale Roscoe cv Bentong) against Burkholderia glumae causative agent of bacterial panicle blight disease of rice. Plants 11(11):1466

    Article  Google Scholar 

  55. Velmurugan P, Anbalagan K, Manosathyadevan M, Lee K-J, Cho M, Lee S-M, Park J-H, Oh S-G, Bang K-S, Oh B-T (2014) Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess Biosyst Eng 37(10):1935–1943. https://doi.org/10.1007/s00449-014-1169-6

    Article  Google Scholar 

  56. Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599. https://doi.org/10.1016/j.tibtech.2016.02.006

    Article  Google Scholar 

  57. Khan AU, Rahman Au, Yuan Q, Ahmad A, Khan ZUH, Mahnashi MH, Alyami BA, Alqahtani YS, Ullah S, Wirman AP (2020) Facile and eco-benign fabrication of Ag/Fe2O3 nanocomposite using Algaia Monozyga leaves extract and its’ efficient biocidal and photocatalytic applications. Photodiagn Photodyn Ther 32:101970. https://doi.org/10.1016/j.pdpdt.2020.101970

    Article  Google Scholar 

  58. Aref MS, Salem SS (2020) Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. Biocatal Agric Biotechnol 27:101689. https://doi.org/10.1016/j.bcab.2020.101689

    Article  Google Scholar 

  59. Berastegui P, Tai C-W, Valvo M (2018) Electrochemical reactions of AgFeO2 as negative electrode in Li- and Na-ion batteries. J Power Sources 401:386–396. https://doi.org/10.1016/j.jpowsour.2018.09.002

    Article  Google Scholar 

  60. Kulkarni S, Jadhav M, Raikar P, Barretto DA, Vootla SK, Raikar U (2017) Green synthesized multifunctional Ag@ Fe 2 O 3 nanocomposites for effective antibacterial, antifungal and anticancer properties. New J Chem 41(17):9513–9520

    Article  Google Scholar 

  61. Al-Rajhi AMH, Salem SS, Alharbi AA, Abdelghany TM (2022) Ecofriendly synthesis of silver nanoparticles using Kei-apple (Dovyalis caffra) fruit and their efficacy against cancer cells and clinical pathogenic microorganisms. Arab J Chem 15(7):103927. https://doi.org/10.1016/j.arabjc.2022.103927

    Article  Google Scholar 

  62. Espenti CS, Rao KSVK, Rao KM (2016) Bio-synthesis and characterization of silver nanoparticles using Terminalia chebula leaf extract and evaluation of its antimicrobial potential. Mater Lett 174:129–133. https://doi.org/10.1016/j.matlet.2016.03.106

    Article  Google Scholar 

  63. Qasim S, Zafar A, Saif MS, Ali Z, Nazar M, Waqas M, Haq AU, Tariq T, Hassan SG, Iqbal F, Shu X-G, Hasan M (2020) Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity. J Photochem Photobiol, B 204:111784. https://doi.org/10.1016/j.jphotobiol.2020.111784

    Article  Google Scholar 

  64. Biswal SK, Panigrahi GK, Sahoo SK (2020) Green synthesis of Fe2O3-Ag nanocomposite using Psidium guajava leaf extract: an eco-friendly and recyclable adsorbent for remediation of Cr(VI) from aqueous media. Biophys Chem 263:106392. https://doi.org/10.1016/j.bpc.2020.106392

    Article  Google Scholar 

  65. Ozdal M, Gurkok S (2022) Recent advances in nanoparticles as antibacterial agent. ADMET DMPK 10(2):115–129

    Google Scholar 

  66. Wei Z, Zhou Z, Yang M, Lin C, Zhao Z, Huang D, Chen Z, Gao J (2011) Multifunctional Ag@ Fe 2 O 3 yolk–shell nanoparticles for simultaneous capture, kill, and removal of pathogen. J Mater Chem 21(41):16344–16348

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for providing the necessary research facilities for this work through Small Groups. (Project under grant number:(RGP.1/252/43).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Fatimah A. M. Al-Zahrani and Salem S. Salem. Methodology and resources: Fatimah A. M. Al-Zahrani, Nourah A. AL-Zahrani, Sameera N. Al-Ghamdi, and Salem S. Salem. Validation and visualization: Fatimah A. M. Al-Zahrani, Nourah A. AL-Zahrani, Sameera N. Al-Ghamdi, Long Lin, Salem S. Salem, and Reda M. El-Shishtawy. Formal Analysis: Fatimah A. M. Al-Zahrani and Salem S. Salem. Writing original draft preparation: Fatimah A. M. Al-Zahrani and Salem S. Salem. Writing review and Editing: Fatimah A. M. Al-Zahrani, Nourah A. AL-Zahrani, Sameera N. Al-Ghamdi, Long Lin, Salem S. Salem, and Reda M. El-Shishtawy. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Salem S. Salem.

Ethics declarations

Ethics approval

Not applicable.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The affiliation details for Nourah A. AL-Zahrani was incorrectly given.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Zahrani, F.A.M., AL-Zahrani, N.A., Al-Ghamdi, S.N. et al. Synthesis of Ag/Fe2O3 nanocomposite from essential oil of ginger via green method and its bactericidal activity. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03248-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03248-9

Keywords

Navigation