Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electrostatic gating and intercalation in 2D materials

Abstract

The doping or the alteration of crystals with guest species to obtain desired properties has long been a research frontier in materials science. However, the closely packed lattice structure in many crystals has limited the applicability of this strategy. The advent of 2D layered materials has led to revitalized interest in utilizing this approach through two important strategies, gating and intercalation, offering reversible modulation of the properties of the host material without breaking chemical bonds. In addition, these dynamically tunable techniques have enabled the synthesis of new hybrid materials. Here, we review how interactions between guest species and host 2D materials can tune the physics and chemistry of materials and discuss their remarkable potential for creating artificial materials and architectures beyond the reach of conventional methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interactions between 2D materials and guest species.
Fig. 2: Guest-species gating method.
Fig. 3: Gate-controlled modulation and phase diagrams in 2D materials.
Fig. 4: Effects and progress of (de-)intercalation.

Similar content being viewed by others

References

  1. Ahn, C. H. et al. Electrostatic modification of novel materials. Rev. Mod. Phys. 78, 1185–1212 (2006).

    Article  CAS  Google Scholar 

  2. Norris, D. J., Efros, A. L. & Erwin, S. C. Doped nanocrystals. Science 319, 1776–1779 (2008).

    Article  CAS  Google Scholar 

  3. Chen, Y. et al. Phase engineering of nanomaterials. Nat. Rev. Chem. 4, 243–256 (2020).

    Article  CAS  Google Scholar 

  4. Ning, C. Z., Dou, L. T. & Yang, P. D. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2, 17070 (2017).

    Article  CAS  Google Scholar 

  5. Tsutsui, G., Mochizuki, S., Loubet, N., Bedell, S. W. & Sadana, D. K. Strain engineering in functional materials. AIP Adv. 9, 030701 (2019).

    Article  Google Scholar 

  6. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  Google Scholar 

  7. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article  CAS  Google Scholar 

  8. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  9. Dresselhaus, M. S. Intercalation in Layered Materials Vol. 148 (Springer, 1986). This comprehensive survey of intercalation of bulk layered crystals emphasizes the physics of intercalation and the complementarity of intercalated materials and deliberately structured superlattices formed by various techniques.

  10. Liu, X. L. & Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019).

    Article  Google Scholar 

  11. Iannaccone, G., Bonaccorso, F., Colombo, L. & Fiori, G. Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 13, 183–191 (2018).

    Article  CAS  Google Scholar 

  12. Pomerantseva, E. & Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2, 17089 (2017).

    Article  CAS  Google Scholar 

  13. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

    Article  CAS  Google Scholar 

  14. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    Article  CAS  Google Scholar 

  15. Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).

    Article  CAS  Google Scholar 

  16. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  CAS  Google Scholar 

  17. Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  CAS  Google Scholar 

  18. Yuan, H. T. et al. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 19, 1046–1053 (2009).

    Article  CAS  Google Scholar 

  19. Largeot, C. et al. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130, 2730 (2008).

    Article  CAS  Google Scholar 

  20. Zhang, Y., Ye, J., Matsuhashi, Y. & Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 12, 1136–1140 (2012). This study is one of the early demonstrations of 2D materials transistors with ionic liquid gating.

    Article  CAS  Google Scholar 

  21. Wu, C. L. et al. Gate-induced metal-insulator transition in MoS2 by solid superionic conductor LaF3. Nano Lett. 18, 2387–2392 (2018).

    Article  CAS  Google Scholar 

  22. Fujimoto, T. & Awaga, K. Electric-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 15, 8983–9006 (2013).

    Article  CAS  Google Scholar 

  23. Armand, M., Endres, F., MacFarlane, D. R., Ohno, H. & Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009).

    Article  CAS  Google Scholar 

  24. Yuan, H. T. et al. Liquid-gated ambipolar transport in ultrathin films of a topological insulator Bi2Te3. Nano Lett. 11, 2601–2605 (2011).

    Article  CAS  Google Scholar 

  25. Allain, A. & Kis, A. Electron and hole mobilities in single-layer WSe2. ACS Nano 8, 7180–7185 (2014).

    Article  CAS  Google Scholar 

  26. Saito, Y. & Iwasa, Y. Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating. ACS Nano 9, 3192–3198 (2015).

    Article  CAS  Google Scholar 

  27. Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    Article  CAS  Google Scholar 

  28. Ye, J. T. et al. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9, 125–128 (2010).

    Article  CAS  Google Scholar 

  29. Ueno, K. et al. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat. Nanotechnol. 6, 408–412 (2011).

    Article  CAS  Google Scholar 

  30. Yu, Y. J. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).

    Article  CAS  Google Scholar 

  31. Ozel, T., Gaur, A., Rogers, J. A. & Shim, M. Polymer electrolyte gating of carbon nanotube network transistors. Nano Lett. 5, 905–911 (2005).

    Article  CAS  Google Scholar 

  32. Lin, M. W. et al. Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte. J. Phys. D. 45, 345102 (2012).

    Article  Google Scholar 

  33. Pu, J. et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012).

    Article  CAS  Google Scholar 

  34. Pu, J. et al. Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics. Appl. Phys. Lett. 103, 023505 (2013).

    Article  Google Scholar 

  35. McCann, D. M., Misek, M., Kamenev, K. V. & Huxley, A. D. Pressure-temperature phase diagram of ionic liquid dielectric DEME-TFSI. Phys. Procedia 75, 252–258 (2015).

    Article  CAS  Google Scholar 

  36. Lu, A. X., Sun, J., Jiang, J. & Wan, Q. Microporous SiO2 with huge electric-double-layer capacitance for low-voltage indium tin oxide thin-film transistors. Appl. Phys. Lett. 95, 222905 (2009).

    Article  Google Scholar 

  37. Liu, H. X., Sun, J., Tang, Q. X. & Wan, Q. Ultra low-voltage electric double-layer SnO2 nanowire transistors gated by microporous SiO2-based solid electrolyte. J. Phys. Chem. C. 114, 12316–12319 (2010).

    Article  CAS  Google Scholar 

  38. Chao, J. Y., Zhu, L. Q., Xiao, H. & Yuan, Z. G. Protonic/electronic hybrid oxide transistor gated by chitosan and its full-swing low voltage inverter applications. J. Appl. Phys. 118, 235301 (2015).

    Article  Google Scholar 

  39. Zhao, J. L. et al. Lithium-ion-based solid electrolyte tuning of the carrier density in graphene. Sci. Rep. 6, 34816 (2016).

    Article  CAS  Google Scholar 

  40. Alam, M. H. et al. Lithium-ion electrolytic substrates for sub-1V high-performance transition metal dichalcogenide transistors and amplifiers. Nat. Commun. 11, 3203 (2020).

    Article  CAS  Google Scholar 

  41. Zhao, J. L. et al. Application of sodium-ion-based solid electrolyte in electrostatic tuning of carrier density in graphene. Sci. Rep. 7, 3168 (2017).

    Article  Google Scholar 

  42. Zhang, S., Wang, J., Lu, X. & Zhou, Q. Structures and Interactions of Ionic Liquids Vol. 151 (Springer, 2013).

  43. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  44. Palumbo, F. et al. A review on dielectric breakdown in thin dielectrics: silicon dioxide, high-k, and layered dielectrics. Adv. Funct. Mater. 30, 1900657 (2020).

    Article  CAS  Google Scholar 

  45. Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

    Article  CAS  Google Scholar 

  46. Veyrat, L. et al. Helical quantum Hall phase in graphene on SrTiO3. Science 367, 781–786 (2020).

    Article  CAS  Google Scholar 

  47. Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2017). This review focuses on the physical properties of highly crystalline 2D superconductors, and discusses the electric field-controlled superconductivity by EDLTs.

    Article  CAS  Google Scholar 

  48. Zheliuk, O. et al. Josephson coupled Ising pairing induced in suspended MoS2 bilayers by double-side ionic gating. Nat. Nanotechnol. 14, 1123–1128 (2019).

    Article  CAS  Google Scholar 

  49. Nakagawa, Y. et al. Gate-controlled BCS–BEC crossover in a two-dimensional superconductor. Science 372, 190–195 (2021).

    Article  CAS  Google Scholar 

  50. Li, L. J. et al. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 529, 185–189 (2016).

    Article  CAS  Google Scholar 

  51. Shiogai, J., Ito, Y., Mitsuhashi, T., Nojima, T. & Tsukazaki, A. Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO. Nat. Phys. 12, 42–46 (2016).

    Article  CAS  Google Scholar 

  52. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  CAS  Google Scholar 

  53. Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).

    Article  CAS  Google Scholar 

  54. Verzhbitskiy, I. A. et al. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat. Electron. 3, 460–465 (2020).

    Article  CAS  Google Scholar 

  55. Li, Y., Duerloo, K. A. N., Wauson, K. & Reed, E. J. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nat. Commun. 7, 10671 (2016).

    Article  CAS  Google Scholar 

  56. Wang, Y. et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487–491 (2017).

    Article  CAS  Google Scholar 

  57. Zakhidov, D., Rehn, D. A., Reed, E. J. & Salleo, A. Reversible electrochemical phase change in monolayer to bulk-like MoTe2 by ionic liquid gating. ACS Nano 14, 2894–2903 (2020).

    Article  CAS  Google Scholar 

  58. Datta, I. et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photonics 14, 256 (2020).

    Article  CAS  Google Scholar 

  59. Yuan, H. T. et al. Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors. J. Am. Chem. Soc. 132, 18402–18407 (2010).

    Article  CAS  Google Scholar 

  60. Lu, J. M. et al. Evidence for two-dimensional ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).

    Article  CAS  Google Scholar 

  61. Lee, S. J. et al. Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nat. Electron. 3, 630–637 (2020).

    Article  CAS  Google Scholar 

  62. Koski, K. J. et al. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 134, 13773–13779 (2012).

    Article  CAS  Google Scholar 

  63. Wang, M. J. et al. Chemical intercalation of heavy metal, semimetal, and semiconductor atoms into 2D layered chalcogenides. 2D Mater. 5, 045005 (2018).

    Article  CAS  Google Scholar 

  64. Mckelvey, M., Sharma, R., Ong, E., Burr, G. & Glaunsinger, W. Dynamic atomic-level observation of staging phenomena in silver and mercury intercalates of titanium disulfide. Chem. Mater. 3, 783–786 (1991).

    Article  Google Scholar 

  65. Parkin, S. & Friend, R. 3d transition-metal intercalates of the niobium and tantalum dichalcogenides. I. Magnetic properties. Philos. Mag. B 41, 65–93 (1980).

    Article  CAS  Google Scholar 

  66. Parkin, S. & Friend, R. 3d transition-metal intercalates of the niobium and tantalum dichalcogenides. II. Transp. properties. Philos. Mag. B 41, 95–112 (1980).

    Article  CAS  Google Scholar 

  67. Vickery, R. C. & Campbell, N. L. Rare earth graphite intercalates. J. Am. Chem. Soc. 79, 5897–5899 (1957).

    Article  CAS  Google Scholar 

  68. Zhang, L. F. et al. 2D atomic crystal molecular superlattices by soft plasma intercalation. Nat. Commun. 11, 5960 (2020).

    Article  CAS  Google Scholar 

  69. Grenier, J. C. et al. Electrochemical oxygen intercalation into oxide networks. J. Solid State Chem. 96, 20–30 (1992).

    Article  CAS  Google Scholar 

  70. Hartwigsen, C., Witschel, W. & Spohr, E. Charge density and charge transfer in stage-1 alkali-graphite intercalation compounds. Phys. Rev. B 55, 4953–4959 (1997).

    Article  CAS  Google Scholar 

  71. Zhao, X. X. et al. Engineering covalently bonded 2D layered materials by self-intercalation. Nature 581, 171–177 (2020).

    Article  CAS  Google Scholar 

  72. Gamble, F. R., Osiecki, J. H. & Disalvo, F. J. Some superconducting intercalation complexes of TaS2 and substituted pyridines. J. Chem. Phys. 55, 3525 (1971).

    Article  CAS  Google Scholar 

  73. Rao, G. V. S., Shafer, M. W. & Tsang, J. C. Intercalation compounds of metal-hydroxides with group V layered dichalcogenides. J. Phys. Chem. 79, 553–557 (1975).

    Article  CAS  Google Scholar 

  74. Stumpp, E. The intercalation of metal chlorides and bromides into graphite. Mater. Sci. Eng. 31, 53–59 (1977).

    Article  CAS  Google Scholar 

  75. Yeh, I. C. & Hummer, G. System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions. J. Phys. Chem. B 108, 15873–15879 (2004).

    Article  CAS  Google Scholar 

  76. Zhang, J. S. et al. Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nat. Commun. 9, 5289 (2018).

    Article  CAS  Google Scholar 

  77. Koski, K. J. et al. High-density chemical intercalation of zero-valent copper into Bi2Se3 nanoribbons. J. Am. Chem. Soc. 134, 7584–7587 (2012).

    Article  CAS  Google Scholar 

  78. Van der Ven, A., Bhattacharya, J. & Belak, A. A. Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 46, 1216–1225 (2013).

    Article  Google Scholar 

  79. Friend, R. H. & Yoffe, A. D. Electronic-properties of intercalation complexes of the transition-metal dichalcogenides. Adv. Phys. 36, 1–94 (1987).

    Article  CAS  Google Scholar 

  80. Rao, C. N. R., Raveau, B., Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides (World Scientific, 1998).

  81. Winter, M., Besenhard, J. O., Spahr, M. E. & Novak, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725–763 (1998).

    Article  CAS  Google Scholar 

  82. Mulhern, P. J. Lithium intercalation in crystalline LixMoS2. Can. J. Phys. 67, 1049–1052 (1989).

    Article  CAS  Google Scholar 

  83. Sole, C., Drewett, N. E. & Hardwick, L. J. In situ Raman study of lithium-ion intercalation into microcrystalline graphite. Faraday Discuss. 172, 223–237 (2014).

    Article  CAS  Google Scholar 

  84. Grenier, J. C., Pouchard, M. & Wattiaux, A. Electrochemical synthesis: oxygen intercalation. Curr. Opin. Solid State Mater. Sci. 1, 233–240 (1996).

    Article  CAS  Google Scholar 

  85. Julien, C. M. Lithium intercalated compounds — charge transfer and related properties. Mat. Sci. Eng. R. 40, 47–102 (2003).

    Article  Google Scholar 

  86. Reimers, J. N. & Dahn, J. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091 (1992).

    Article  CAS  Google Scholar 

  87. Chen, Z. H., Lu, Z. H. & Dahn, J. R. Staging phase transitions in LixCoO2. J. Electrochem. Soc. 149, A1604 (2002).

    Article  CAS  Google Scholar 

  88. Daheron, L. et al. Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS. Chem. Mater. 20, 583–590 (2008).

    Article  CAS  Google Scholar 

  89. Lu, Z. Y., Jiang, K., Chen, G. X., Wang, H. T. & Cui, Y. Lithium electrochemical tuning for electrocatalysis. Adv. Mater. 30, 1800978 (2018).

    Article  Google Scholar 

  90. Bae, J. et al. Kinetic 2D crystals via topochemical approach. Adv. Mater. 30, 2006043 (2021).

    Article  Google Scholar 

  91. Ranmohotti, K. G. S., Josepha, E., Choi, J., Zhang, J. X. & Wiley, J. B. Topochemical manipulation of perovskites: low-temperature reaction strategies for directing structure and properties. Adv. Mater. 23, 442–460 (2011).

    Article  Google Scholar 

  92. Dines, M. B. Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides. Mater. Res. Bull. 10, 287–291 (1975).

    Article  CAS  Google Scholar 

  93. Liu, R. et al. Intercalating copper into layered TaS2 van der Waals gaps. Rsc Adv. 7, 46699–46703 (2017).

    Article  CAS  Google Scholar 

  94. Motter, J. P., Koski, K. J. & Cui, Y. General strategy for zero-valent intercalation into two-dimensional layered nanomaterials. Chem. Mater. 26, 2313–2317 (2014).

    Article  CAS  Google Scholar 

  95. Zhong, Q., Dahn, J. R. & Colbow, K. Lithium intercalation into WO3 and the phase-diagram of LixWO3. Phys. Rev. B 46, 2554–2560 (1992).

    Article  CAS  Google Scholar 

  96. Dahn, J. R. & Mckinnon, W. R. Structure and electrochemistry of LixMoO2. Solid State Ion. 23, 1–7 (1987).

    Article  CAS  Google Scholar 

  97. Jiao, F. & Bruce, P. G. Mesoporous crystalline β-MnO2 — a reversible positive electrode for rechargeable lithium batteries. Adv. Mater. 19, 657–660 (2007).

    Article  CAS  Google Scholar 

  98. Kim, C. et al. Direct observation of reversible magnesium ion intercalation into a spinel oxide host. Adv. Mater. 27, 3377–3384 (2015).

    Article  CAS  Google Scholar 

  99. Moshopoulou, E. G. Superconductivity in the spinel compound LiTi2O4. J. Am. Ceram. Soc. 82, 3317–3320 (1999).

    Article  CAS  Google Scholar 

  100. Yoshimatsu, K., Niwa, M., Mashiko, H., Oshima, T. & Ohtomo, A. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction. Sci. Rep. 5, 16325 (2015).

    Article  CAS  Google Scholar 

  101. Golub, A. S., Protzenko, G. A., Yanovskaya, I. M., Lependina, O. L. & Novikov, Y. N. New intercalation compounds of molybdenum-disulfide with transition-metals, Az(H2O)yMoS2 (A = Fe, Co, Ni, Y, La, Er, Th). Mendeleev Commun. 3, 199–200 (1993).

    Article  Google Scholar 

  102. Chen, Z. X. et al. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nat. Commun. 8, 14548 (2017).

    Article  CAS  Google Scholar 

  103. Luo, Y. T. et al. Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 12, 4565–4573 (2018).

    Article  CAS  Google Scholar 

  104. Zou, Y. C. et al. Ion exchange in atomically thin clays and micas. Nat. Mater. 20, 1677–1682 (2021).

    Article  CAS  Google Scholar 

  105. Poeppelmeier, K. R., Leonowicz, M. E. & Longo, J. M. CaMnO2.5 and Ca2MnO3.5 — new oxygen-defect perovskite-type oxides. J. Solid State Chem. 44, 89–98 (1982).

    Article  CAS  Google Scholar 

  106. Briatico, J. et al. Double-exchange interaction in electron-doped CaMnO3–δ perovskites. Phys. Rev. B 53, 14020–14023 (1996).

    Article  CAS  Google Scholar 

  107. Zhang, J. J. et al. Large orbital polarization in a metallic square-planar nickelate. Nat. Phys. 13, 864–869 (2017).

    Article  CAS  Google Scholar 

  108. Hansteen, O. H., Fjellvag, H. & Hauback, B. C. Crystal structure and magnetic properties of La2Co2O5. J. Solid State Chem. 141, 411–417 (1998).

    Article  CAS  Google Scholar 

  109. Hayward, M. A., Green, M. A., Rosseinsky, M. J. & Sloan, J. Sodium hydride as a powerful reducing agent for topotactic oxide deintercalation: synthesis and characterization of the nickel(I) oxide LaNiO2. J. Am. Chem. Soc. 121, 8843–8854 (1999).

    Article  CAS  Google Scholar 

  110. Hayward, M. A. & Rosseinsky, M. J. Synthesis of the infinite layer Ni(I) phase NdNiO2+x by low temperature reduction of NdNiO3 with sodium hydride. Solid State Sci. 5, 839–850 (2003).

    Article  CAS  Google Scholar 

  111. Kawai, M. et al. Reversible changes of epitaxial thin films from perovskite LaNiO3 to infinite-layer structure LaNiO2. Appl. Phys. Lett. 94, 082102 (2009).

    Article  Google Scholar 

  112. Tsujimoto, Y. et al. Infinite-layer iron oxide with a square-planar coordination. Nature 450, 1062–1065 (2007).

    Article  CAS  Google Scholar 

  113. Hayward, M. A. Topochemical reactions of layered transition-metal oxides. Semicond. Sci. Tech. 29, 064010 (2014).

    Article  CAS  Google Scholar 

  114. Kaneko, D., Yamagishi, K., Tsukada, A., Manabe, T. & Naito, M. Synthesis of infinite-layer LaNiO2 films by metal organic decomposition. Phys. C. 469, 936–939 (2009).

    Article  CAS  Google Scholar 

  115. Hadermann, J., Abakumov, A. M., Adkin, J. J. & Hayward, M. A. Topotactic reduction as a route to new close-packed anion deficient perovskites: structure and magnetism of 4H-BaMnO2+x. J. Am. Chem. Soc. 131, 10598–10604 (2009).

    Article  CAS  Google Scholar 

  116. Ikeda, A., Manabe, T. & Naito, M. Comparison of reduction agents in the synthesis of infinite-layer LaNiO2 films. Phys. C. 506, 83–86 (2014).

    Article  CAS  Google Scholar 

  117. Shimakawa, Y. et al. Topotactic changes in thin films of brownmillerite SrFeO2.5 grown on SrTiO3 substrates to infinite-layer structure SrFeO2. Cryst. Growth Des. 10, 4713–4715 (2010).

    Article  CAS  Google Scholar 

  118. Kawakami, T. et al. Spin transition in a four-coordinate iron oxide. Nat. Chem. 1, 371–376 (2009).

    Article  CAS  Google Scholar 

  119. Zubko, P., Gariglio, S., Gabay, M., Ghosez, P. & Triscone, J. M. Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141–165 (2011).

    Article  CAS  Google Scholar 

  120. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    Article  CAS  Google Scholar 

  121. Poltavets, V. V. et al. La3Ni2O6: a new double Tʹ-type nickelate with infinite Ni1+/2+O2 layers. J. Am. Chem. Soc. 128, 9050–9051 (2006).

    Article  CAS  Google Scholar 

  122. Poltavets, V. V. et al. Bulk magnetic order in a two-dimensional Ni1+/Ni2+ (d(9)/d(8)) nickelate, isoelectronic with superconducting cuprates. Phys. Rev. Lett. 104, 206403 (2010).

    Article  Google Scholar 

  123. Lacorre, P. Passage from T-type to Tʹ-type arrangement by reducing R4Ni3O10 to R4Ni3O8 (R = La, Pr, Nd). J. Solid State Chem. 97, 495–500 (1992).

    Article  CAS  Google Scholar 

  124. Zhang, J. J. et al. Stacked charge stripes in the quasi-2D trilayer nickelate La4Ni3O8. Proc. Natl Acad. Sci. USA 113, 8945–8950 (2016).

    Article  CAS  Google Scholar 

  125. Zhang, J. J. et al. Spin stripe order in a square planar trilayer nickelate. Phys. Rev. Lett. 122, 247201 (2019).

    Article  CAS  Google Scholar 

  126. Norman, M. R. Materials design for new superconductors. Rep. Prog. Phys. 79, 074502 (2016).

    Article  CAS  Google Scholar 

  127. Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019). This study demonstrates superconductivity in an infinite-layer nickelate structure formed by soft-chemistry de-intercalation.

    Article  CAS  Google Scholar 

  128. Norman, M. R. Entering the nickel age of superconductivity. Physics 13, 85 (2020).

    Article  Google Scholar 

  129. Jung, N. et al. Charge transfer chemical doping of few layer graphenes: charge distribution and band gap formation. Nano Lett. 9, 4133–4137 (2009).

    Article  CAS  Google Scholar 

  130. Ahmad, S., Miro, P., Audiffred, M. & Heine, T. Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation. Solid State Commun. 272, 22–27 (2018).

    Article  CAS  Google Scholar 

  131. Hagenmuller, P. Intercalation chemistry and chemical bonding. J. Phys. Chem. Solids 59, 503–506 (1998).

    Article  CAS  Google Scholar 

  132. Shetty, P. P. et al. In situ dynamics during heating of copper-intercalated bismuth telluride. Matter 3, 1246–1262 (2020).

    Article  Google Scholar 

  133. Viciu, L. et al. Crystal structure and elementary properties of NaxCoO2 (x = 0.32, 0.51, 0.6, 0.75, and 0.92) in the three-layer NaCoO2 family. Phys. Rev. B 73, 174104 (2006).

    Article  Google Scholar 

  134. Fouassier, C., Matejka, G., Reau, J.-M. & Hagenmuller, P. Sur de nouveaux bronzes oxygénés de formule NaχCoO2 (χ1). Le système cobalt–oxygène–sodium. J. Solid State Chem. 6, 532–537 (1973).

    Article  CAS  Google Scholar 

  135. Huang, Q. et al. Coupling between electronic and structural degrees of freedom in the triangular lattice conductor NaxCoO2. Phys. Rev. B 70, 184110 (2004).

    Article  Google Scholar 

  136. Delmas, C., Braconnier, J. J., Fouassier, C. & Hagenmuller, P. Electrochemical Intercalation of sodium in NaxCoO2 bronzes. Solid State Ion. 34, 165–169 (1981).

    Article  Google Scholar 

  137. Motohashi, T. et al. Electronic phase diagram of the layered cobalt oxide system LixCoO2 (0.0 ≤ x ≤ 1.0). Phys. Rev. B 80, 165114 (2009).

    Article  Google Scholar 

  138. Foo, M. L. et al. Charge ordering, commensurability, and metallicity in the phase diagram of the layered NaxCoO2. Phys. Rev. Lett. 92, 247001 (2004).

    Article  Google Scholar 

  139. Ong, N. P. & Cava, R. J. Electronic frustration on a triangular lattice. Science 305, 52–53 (2004).

    Article  CAS  Google Scholar 

  140. Takada, K. et al. Superconductivity in two-dimensional CoO2 layers. Nature 422, 53–55 (2003).

    Article  CAS  Google Scholar 

  141. Schaak, R. E., Klimczuk, T., Foo, M. L. & Cava, R. J. Superconductivity phase diagram of NaxCoO2 × 1.3 H2O. Nature 424, 527–529 (2003).

    Article  CAS  Google Scholar 

  142. Milne, C. J. et al. Revised superconducting phase diagram of hole-doped Nax(H3O)zCoO2·yH2O. Phys. Rev. Lett. 93, 247007 (2004).

    Article  CAS  Google Scholar 

  143. Sakurai, H., Takada, K., Sasaki, T. & Takayama-Muromachi, E. Phase diagram of superconducting NaxCoO2·yH2O. J. Phys. Soc. Jpn. 74, 2909–2912 (2005).

    Article  CAS  Google Scholar 

  144. Sakurai, H., Takada, K., Sasaki, T. & Takayama-Muromachi, E. Superconducting phase diagram of NaxCoO2·yH2O. Phys. C. 445, 31–34 (2006).

    Article  Google Scholar 

  145. Sakurai, H. et al. Valence and Na content dependences of superconductivity in NaxCoO2·yH2O. Phys. Rev. B 74, 092502 (2006).

    Article  Google Scholar 

  146. Terasaki, I., Sasago, Y. & Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, 12685–12687 (1997).

    Article  Google Scholar 

  147. Ray, R., Ghoshray, A., Ghoshray, K. & Nakamura, S. Co-59 NMR studies of metallic NaCo2O4. Phys. Rev. B 59, 9454–9461 (1999).

    Article  CAS  Google Scholar 

  148. Wang, Y. Y., Rogado, N. S., Cava, R. J. & Ong, N. P. Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature 423, 425–428 (2003).

    Article  CAS  Google Scholar 

  149. Crespin, M., Levitz, P. & Gatineau, L. Reduced forms of LaNiO3 perovskite. 1. Evidence for new phases — La2Ni2O5 and LaNiO2. J. Chem. Soc. Faraday Trans. 79, 1181–1194 (1983).

    Article  CAS  Google Scholar 

  150. Levitz, P., Crespin, M. & Gatineau, L. Reduced forms of LaNiO3 perovskite. 2. X-ray structure of LaNiO2 and extended X-ray absorption fine-structure study — local environment of mono-valent nickel. J. Chem. Soc. Faraday Trans. 79, 1195–1203 (1983).

    Article  CAS  Google Scholar 

  151. Li, D. et al. Superconducting dome in Nd1–xSrxNiO2 infinite layer films. Phys. Rev. Lett. 125, 027001 (2020).

    Article  CAS  Google Scholar 

  152. Zeng, S. W. et al. Phase diagram and superconducting dome of infinite-layer Nd1–xSrxNiO2 thin films. Phys. Rev. Lett. 125, 147003 (2020).

    Article  CAS  Google Scholar 

  153. Osada, M. et al. A superconducting praseodymium nickelate with infinite layer structure. Nano Lett. 20, 5735–5740 (2020).

    Article  CAS  Google Scholar 

  154. Osada, M., Wang, B. Y., Lee, K., Li, D. & Hwang, H. Y. Phase diagram of infinite layer praseodymium nickelate Pr1–xSrxNiO2 thin films. Phys. Rev. Mater. 4, 121801 (2020).

    Article  CAS  Google Scholar 

  155. Kawai, M. et al. Orientation change of an infinite-layer structure LaNiO2 epitaxial thin film by annealing with CaH2. Cryst. Growth Des. 10, 2044–2046 (2010).

    Article  CAS  Google Scholar 

  156. Ōnuki, Y., Ina, K., Hirai, T. & Komatsubara, T. Magnetic properties of intercalation compound: Mn1/4MX2. J. Phys. Soc. Jpn. 55, 347–356 (1986).

    Article  Google Scholar 

  157. Li, K. R. et al. Tunable magnetic response in 2D materials via reversible intercalation of paramagnetic ions. Adv. Electron. Mater. 5, 1900040 (2019).

    Article  Google Scholar 

  158. Sokolov, I. S. et al. Two-dimensional ferromagnetism in Eu-intercalated few-layer graphene. J. Alloy. Compd. 884, 161078 (2021).

    Article  CAS  Google Scholar 

  159. Huang, X. K. et al. Li-ion intercalation enhanced ferromagnetism in van der Waals Fe3GeTe2 bilayer. Appl. Phys. Lett. 119, 012405 (2021).

    Article  CAS  Google Scholar 

  160. Zheng, G. L. et al. Gate-tuned interlayer coupling in van der Waals ferromagnet Fe3GeTe2 nanoflakes. Phys. Rev. Lett. 125, 047202 (2020).

    Article  CAS  Google Scholar 

  161. Imanishi, N., Toyoda, M., Takeda, Y. & Yamamoto, O. Study on lithium intercalation into MoS2. Solid. State Ion. 58, 333–338 (1992).

    Article  CAS  Google Scholar 

  162. Py, M. A. & Haering, R. R. Structural destabilization induced by lithium intercalation in MoS2 and related-compounds. Can. J. Phys. 61, 76–84 (1983).

    Article  CAS  Google Scholar 

  163. Xiong, F. et al. Li intercalation in MoS2: in situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 15, 6777–6784 (2015).

    Article  CAS  Google Scholar 

  164. Peng, J. et al. High phase purity of large-sized 1Tʹ-MoS2 monolayers with 2D superconductivity. Adv. Mater. 31, 1900568 (2019).

    Article  Google Scholar 

  165. Muscher, P. K. et al. Highly efficient uniaxial in-plane stretching of a 2D material via ion insertion. Adv. Mater. 33, 2101875 (2021).

    Article  CAS  Google Scholar 

  166. Brahlek, M., Koirala, N., Salehi, M., Bansal, N. & Oh, S. Emergence of decoupled surface transport channels in bulk insulating Bi2Se3 thin films. Phys. Rev. Lett. 113, 026801 (2014).

    Article  CAS  Google Scholar 

  167. Wang, H. T. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl Acad. Sci. USA 110, 19701–19706 (2013).

    Article  CAS  Google Scholar 

  168. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  Google Scholar 

  169. Sood, A. et al. An electrochemical thermal transistor. Nat. Commun. 9, 4510 (2018).

    Article  Google Scholar 

  170. Gamble, F. R., Disalvo, F. J., Klemm, R. A. & Geballe, T. H. Superconductivity in layered structure organometallic crystals. Science 168, 568–570 (1970).

    Article  CAS  Google Scholar 

  171. Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    Article  CAS  Google Scholar 

  172. He, Q. et al. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019).

    Article  CAS  Google Scholar 

  173. Wang, H. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031–1036 (2016).

    Article  CAS  Google Scholar 

  174. Acerce, M., Akdogan, E. K. & Chhowalla, M. Metallic molybdenum disulfide nanosheet-based electrochemical actuators. Nature 549, 370–373 (2017).

    Article  CAS  Google Scholar 

  175. Wan, C. L. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015).

    Article  CAS  Google Scholar 

  176. Wan, J. Y. et al. Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem. Soc. Rev. 45, 6742–6765 (2016).

    Article  CAS  Google Scholar 

  177. Jung, Y., Zhou, Y. & Cha, J. J. Intercalation in two-dimensional transition metal chalcogenides. Inorg. Chem. Front. 3, 452–463 (2016).

    Article  CAS  Google Scholar 

  178. Yao, J. et al. Optical transmission enhacement through chemically tuned two-dimensional bismuth chalcogenide nanoplates. Nat. Commun. 5, 5670 (2014).

    Article  CAS  Google Scholar 

  179. Gong, Y. J. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 13, 294–299 (2018). This study combines lithographic techniques demonstrating an intercalation-based method to form in-plane heterostructures with precise size and spatial control.

    Article  CAS  Google Scholar 

  180. Bisri, S. Z., Shimizu, S., Nakano, M. & Iwasa, Y. Endeavor of iontronics: from fundamentals to applications of ion-controlled electronics. Adv. Mater. 29, 1607054 (2017).

    Article  Google Scholar 

  181. Rajapakse, M. et al. Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. NPJ 2D Mater. Appl. 5, 30 (2021).

    Article  CAS  Google Scholar 

  182. Xue, Y. et al. Atomic-scale ion transistor with ultrahigh diffusivity. Science 372, 501–503 (2021).

    Article  CAS  Google Scholar 

  183. Wu, Y. et al. A two-dimensional MoS2 catalysis transistor by solid-state ion gating manipulation and adjustment (SIGMA). Nano Lett. 19, 7293–7300 (2019).

    Article  CAS  Google Scholar 

  184. Liang, L. et al. Inducing ferromagnetism and Kondo effect in platinum by paramagnetic ionic gating. Sci. Adv. 4, eaar2030 (2018).

    Article  Google Scholar 

  185. Sivakumar, T. & Wiley, J. B. Topotactic route for new layered perovskite oxides containing fluorine: Ln1.2Sr1.8Mn2O7F2 (Ln = Pr, Nd, Sm, Eu, and Gd). Mater. Res. Bull. 44, 74–77 (2009).

    Article  CAS  Google Scholar 

  186. Luneau, D., Romero, F. M. & Ziessel, R. Nitronyl nitroxide biradicals as tetradentate chelates: unusually large metal-nitroxide ferromagnetic interactions. Inorg. Chem. 37, 5078–5087 (1998).

    Article  CAS  Google Scholar 

  187. Almamouri, M., Edwards, P. P., Greaves, C. & Slaski, M. Synthesis and superconducting properties of the strontium copper oxy-fluoride Sr2CuO2F2+δ. Nature 369, 382–384 (1994).

    Article  CAS  Google Scholar 

  188. Kazakov, S. M. et al. Synthesis of alkali-substituted Sr,Cu oxycarbonates — superconductivity in Sr2–xKxCuO2CO3 (0.25 ≤ x ≤ 0.7). Phys. C. 253, 401–406 (1995).

    Article  CAS  Google Scholar 

  189. Ninomiya, H. et al. Calcium-free double-layered cuprate superconductors with critical temperature above 100 K. Commun. Mater. 2, 13 (2021).

    Article  CAS  Google Scholar 

  190. Bediako, D. K. et al. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 558, 425–429 (2018).

    Article  CAS  Google Scholar 

  191. Larson, D. T., Carr, S., Tritsaris, G. A. & Kaxiras, E. Effects of lithium intercalation in twisted bilayer graphene. Phys. Rev. B 101, 075407 (2020).

    Article  CAS  Google Scholar 

  192. Lu, Z. Y., Carr, S., Larson, D. T. & Kaxiras, E. Lithium intercalation in MoS2 bilayers and implications for Moire flat bands. Phys. Rev. B 102, 125424 (2020).

    Article  CAS  Google Scholar 

  193. Wu, Y. et al. Observation of an intermediate state during lithium intercalation of twisted bilayer MoS2. Nat. Commun. 13, 3008 (2022).

    Article  CAS  Google Scholar 

  194. Cui, X. P. et al. Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol. Nat. Commun. 9, 1301 (2018).

    Article  Google Scholar 

  195. Zhao, B. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021).

    Article  CAS  Google Scholar 

  196. Gillie, L. J., Wright, A. J., Hadermann, J., Van Tendeloo, G. & Greaves, C. Synthesis and characterization of the reduced single-layer manganite Sr2MnO3.5+x. J. Solid State Chem. 167, 145–151 (2002).

    Article  CAS  Google Scholar 

  197. Lin, Z. Y. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    Article  CAS  Google Scholar 

  198. Cheng, S. & Wu, Z. Microfluidic electronics. Lab Chip 12, 2782–2791 (2012).

    Article  CAS  Google Scholar 

  199. Nguyen, P. V. et al. Visualizing electrostatic gating effects in two-dimensional heterostructures. Nature 572, 220–223 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (Contract No. DE-AC02-76SF00515).

Author information

Authors and Affiliations

Authors

Contributions

Researching data for article: Y.W., D.L. and C.-L.W. Review/editing of manuscript before submission: Y.W., D.L., H.Y.H. and Y.C. Substantial contribution to discussion of content: Y.W., D.L., C.-L.W., H.Y.H. and Y.C. Writing: Y.W., D.L., C.-L.W., H.Y.H. and Y.C.

Corresponding authors

Correspondence to Harold Y. Hwang or Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Li, D., Wu, CL. et al. Electrostatic gating and intercalation in 2D materials. Nat Rev Mater 8, 41–53 (2023). https://doi.org/10.1038/s41578-022-00473-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00473-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing