Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Primary aldosteronism — a multidimensional syndrome

Abstract

Primary aldosteronism is a common cause of hypertension and is a risk factor for cardiovascular and renal morbidity and mortality, via mechanisms mediated by both hypertension and direct insults to target organs. Despite its high prevalence and associated complications, primary aldosteronism remains largely under-recognized, with less than 2% of people in at-risk populations ever tested. Fundamental progress made over the past decade has transformed our understanding of the pathogenesis of primary aldosteronism and of its clinical phenotypes. The dichotomous paradigm of primary aldosteronism diagnosis and subtyping is being redefined into a multidimensional spectrum of disease, which spans subclinical stages to florid primary aldosteronism, and from single-focal or multifocal to diffuse aldosterone-producing areas, which can affect one or both adrenal glands. This Review discusses how redefining the primary aldosteronism syndrome as a multidimensional spectrum will affect the approach to the diagnosis and subtyping of primary aldosteronism.

Key points

  • Primary aldosteronism is a syndrome of dysregulated aldosterone production, independent of renin and other physiological aldosterone regulators.

  • Primary aldosteronism is an independent risk factor for cardiovascular, renal and metabolic morbidity.

  • Although primary aldosteronism is a common cause of hypertension, it is rarely tested for, and testing typically captures severe disease after serious comorbidities have developed.

  • Primary aldosteronism spans a continuum that evolves from subclinical stages to florid disease and includes single-focal or multifocal aldosterone-producing areas that affect one or both adrenal glands.

  • Early detection and targeted therapy of primary aldosteronism could prevent cardiovascular and renal comorbidity and mortality in many patients with hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The pathophysiology of primary aldosteronism.
Fig. 2: The severity spectrum of primary aldosteronism.
Fig. 3: Pragmatic approach for patients at risk of primary aldosteronism, using available diagnostic tools.
Fig. 4: Adrenal vein sampling principles.
Fig. 5: Spectrum of primary aldosteronism subtypes.

Similar content being viewed by others

References

  1. Conn, J. W. Presidential address. I. Painting background. II. Primary aldosteronism, a new clinical syndrome. J. Lab. Clin. Med. 45, 3–17 (1955).

    CAS  PubMed  Google Scholar 

  2. Wannachalee, T., Lieberman, L. & Turcu, A. F. High prevalence of autonomous aldosterone production in hypertension: how to identify and treat it. Curr. Hypertens. Rep. 24, 123–132 (2022).

    CAS  PubMed  Google Scholar 

  3. Zennaro, M. C., Boulkroun, S. & Fernandes-Rosa, F. L. Pathogenesis and treatment of primary aldosteronism. Nat. Rev. Endocrinol. 16, 578–589 (2020).

    CAS  PubMed  Google Scholar 

  4. Fournier, D., Luft, F. C., Bader, M., Ganten, D. & Andrade-Navarro, M. A. Emergence and evolution of the renin-angiotensin-aldosterone system. J. Mol. Med. 90, 495–508 (2012).

    PubMed  Google Scholar 

  5. Denton, D. The Hunger for Salt: An Anthropological, Physiological, and Medical Analysis 1st edn (Springer, 1984).

  6. Vaidya, A., Mulatero, P., Baudrand, R. & Adler, G. K. The expanding spectrum of primary aldosteronism: implications for diagnosis, pathogenesis, and treatment. Endocr. Rev. 39, 1057–1088 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. Kronenberg, H., Melmed, S., Polonsky, K. & Larsen, P. Williams Textbook of Endocrinology 11th edn (Saunders, 2008).

  8. St-Jean, M., Bourdeau, I., Martin, M. & Lacroix, A. Aldosterone is aberrantly regulated by various stimuli in a high proportion of patients with primary aldosteronism. J. Clin. Endocrinol. Metab. 106, e45–e60 (2021).

    PubMed  Google Scholar 

  9. Zwermann, O., Suttmann, Y., Bidlingmaier, M., Beuschlein, F. & Reincke, M. Screening for membrane hormone receptor expression in primary aldosteronism. Eur. J. Endocrinol. 160, 443–451 (2009).

    CAS  PubMed  Google Scholar 

  10. Palmer, B. F. Regulation of potassium homeostasis. Clin. J. Am. Soc. Nephrol. 10, 1050–1060 (2015).

    CAS  PubMed  Google Scholar 

  11. Arroyo, J. P., Ronzaud, C., Lagnaz, D., Staub, O. & Gamba, G. Aldosterone paradox: differential regulation of ion transport in distal nephron. Physiology 26, 115–123 (2011).

    CAS  PubMed  Google Scholar 

  12. Redheuil, A. et al. Aldosterone-related myocardial extracellular matrix expansion in hypertension in humans: a proof-of-concept study by cardiac magnetic resonance. JACC Cardiovasc. Imaging 13, 2149–2159 (2020).

    PubMed  Google Scholar 

  13. Gaddam, K. et al. Rapid reversal of left ventricular hypertrophy and intracardiac volume overload in patients with resistant hypertension and hyperaldosteronism: a prospective clinical study. Hypertension 55, 1137–1142 (2010).

    CAS  PubMed  Google Scholar 

  14. Rocha, R. et al. Aldosterone: a mediator of myocardial necrosis and renal arteriopathy. Endocrinology 141, 3871–3878 (2000).

    CAS  PubMed  Google Scholar 

  15. Martinez, D. V. et al. Cardiac damage prevention by eplerenone: comparison with low sodium diet or potassium loading. Hypertension 39, 614–618 (2002).

    CAS  PubMed  Google Scholar 

  16. Brilla, C. G. & Weber, K. T. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J. Lab. Clin. Med. 120, 893–901 (1992).

    CAS  PubMed  Google Scholar 

  17. Tesch, G. H. & Young, M. J. Mineralocorticoid receptor signaling as a therapeutic target for renal and cardiac fibrosis. Front. Pharmacol. 8, 313 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. Monticone, S. et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J. Am. Coll. Cardiol. 69, 1811–1820 (2017).

    PubMed  Google Scholar 

  19. Murata, M. et al. Plasma aldosterone level within the normal range is less associated with cardiovascular and cerebrovascular risk in primary aldosteronism. J. Hypertens. 35, 1079–1085 (2017).

    CAS  PubMed  Google Scholar 

  20. Catena, C. et al. Cardiovascular outcomes in patients with primary aldosteronism after treatment. Arch. Intern. Med. 168, 80–85 (2008).

    CAS  PubMed  Google Scholar 

  21. Milliez, P. et al. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J. Am. Coll. Cardiol. 45, 1243–1248 (2005).

    CAS  PubMed  Google Scholar 

  22. Mulatero, P. et al. Long-term cardio- and cerebrovascular events in patients with primary aldosteronism. J. Clin. Endocrinol. Metab. 98, 4826–4833 (2013).

    CAS  PubMed  Google Scholar 

  23. Takeda, R., Matsubara, T., Miyamori, I., Hatakeyama, H. & Morise, T. Vascular complications in patients with aldosterone producing adenoma in Japan: comparative study with essential hypertension. The Research Committee of Disorders of Adrenal Hormones in Japan. J. Endocrinol. Invest. 18, 370–373 (1995).

    CAS  PubMed  Google Scholar 

  24. Reincke, M. et al. Observational study mortality in treated primary aldosteronism: the German Conn’s registry. Hypertension 60, 618–624 (2012).

    CAS  PubMed  Google Scholar 

  25. Savard, S., Amar, L., Plouin, P. F. & Steichen, O. Cardiovascular complications associated with primary aldosteronism: a controlled cross-sectional study. Hypertension 62, 331–336 (2013).

    CAS  PubMed  Google Scholar 

  26. Hundemer, G. L., Curhan, G. C., Yozamp, N., Wang, M. & Vaidya, A. Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. Lancet Diabetes Endocrinol. 6, 51–59 (2018).

    PubMed  Google Scholar 

  27. Rossi, G. P. et al. Long-term control of arterial hypertension and regression of left ventricular hypertrophy with treatment of primary aldosteronism. Hypertension 62, 62–69 (2013).

    CAS  PubMed  Google Scholar 

  28. Rossi, G. P. et al. Adrenalectomy lowers incident atrial fibrillation in primary aldosteronism patients at long term. Hypertension 71, 585–591 (2018).

    CAS  PubMed  Google Scholar 

  29. Fallo, F. et al. Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J. Clin. Endocrinol. Metab. 91, 454–459 (2006).

    CAS  PubMed  Google Scholar 

  30. Chen, W., Li, F., He, C., Zhu, Y. & Tan, W. Elevated prevalence of abnormal glucose metabolism in patients with primary aldosteronism: a meta-analysis. Ir. J. Med. Sci. 183, 283–291 (2014).

    CAS  PubMed  Google Scholar 

  31. Hanslik, G. et al. Increased prevalence of diabetes mellitus and the metabolic syndrome in patients with primary aldosteronism of the German Conn’s Registry. Eur. J. Endocrinol. 173, 665–675 (2015).

    CAS  PubMed  Google Scholar 

  32. Rossi, G. P. et al. Renal damage in primary aldosteronism: results of the PAPY study. Hypertension 48, 232–238 (2006).

    CAS  PubMed  Google Scholar 

  33. Reincke, M. et al. Risk factors associated with a low glomerular filtration rate in primary aldosteronism. J. Clin. Endocrinol. Metab. 94, 869–875 (2009).

    CAS  PubMed  Google Scholar 

  34. Hundemer, G. et al. Renin phenotypes to characterize vascular disease, autonomous aldosteronism, and mineralocorticoid receptor activity. J. Clin. Endocrinol. Metab. 102, 1835–1843 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Sechi, L. A. et al. Long-term renal outcomes in patients with primary aldosteronism. JAMA 295, 2638–2645 (2006).

    CAS  PubMed  Google Scholar 

  36. Salcuni, A. S. et al. Bone involvement in aldosteronism. J. Bone Miner. Res. 27, 2217–2222 (2012).

    CAS  PubMed  Google Scholar 

  37. Salcuni, A. S. et al. Primary aldosteronism as a cause of secondary osteoporosis. Eur. J. Endocrinol. 177, 431–437 (2017).

    CAS  PubMed  Google Scholar 

  38. Ceccoli, L. et al. Bone health and aldosterone excess. Osteoporos. Int. 24, 2801–2807 (2013).

    CAS  PubMed  Google Scholar 

  39. Wu, V. C. et al. Risk of fracture in primary aldosteronism: a population-based cohort study. J. Bone Miner. Res. 32, 743–752 (2017).

    CAS  PubMed  Google Scholar 

  40. Velema, M. S. et al. Health-related quality of life and mental health in primary aldosteronism: a systematic review. Horm. Metab. Res. 49, 943–950 (2017).

    CAS  PubMed  Google Scholar 

  41. Buffolo, F. et al. Quality of life in primary aldosteronism: a prospective observational study. Eur. J. Clin. Invest. 51, e13419 (2021).

    CAS  PubMed  Google Scholar 

  42. Saha, S., Bornstein, S. R., Graessler, J., Chakrabarti, S. & Kopprasch, S. Aldosterone hypothesis for cognitive impairment in diabetes mellitus. Horm. Metab. Res. 49, 716–718 (2017).

    CAS  PubMed  Google Scholar 

  43. Gomez-Sanchez, E. P. Brain mineralocorticoid receptors in cognition and cardiovascular homeostasis. Steroids 91, 20–31 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Horiuchi, M. Brain renin-angiotensin-aldosterone system and cognitive function [Japanese]. Nihon Rinsho 72, 641–647 (2014).

    PubMed  Google Scholar 

  45. Loprinzi, P. D. & Frith, E. Obesity and episodic memory function. J. Physiol. Sci. 68, 321–331 (2018).

    PubMed  Google Scholar 

  46. de Kloet, E. R., Meijer, O. C., de Nicola, A. F., de Rijk, R. H. & Joels, M. Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front. Neuroendocrinol. 49, 124–145 (2018).

    PubMed  Google Scholar 

  47. Rotenstein, L. S., Sheridan, M., Garg, R. & Adler, G. K. Effect of mineralocorticoid receptor blockade on hippocampal-dependent memory in adults with obesity. Obesity 23, 1136–1142 (2015).

    CAS  PubMed  Google Scholar 

  48. Monticone, S. et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 6, 41–50 (2018).

    CAS  PubMed  Google Scholar 

  49. Prete, A. et al. Cardiometabolic disease burden and steroid excretion in benign adrenal tumors: a cross-sectional multicenter study. Ann. Intern. Med. 175, 325–334 (2022).

    PubMed  Google Scholar 

  50. Bancos, I. & Prete, A. Approach to the patient with adrenal incidentaloma. J. Clin. Endocrinol. Metab. 106, 3331–3353 (2021).

    PubMed  PubMed Central  Google Scholar 

  51. Vaidya, A., Hamrahian, A., Bancos, I., Fleseriu, M. & Ghayee, H. K. The evaluation of incidentally discovered adrenal masses. Endocr. Pract. 25, 178–192 (2019).

    PubMed  Google Scholar 

  52. Arlt, W. et al. Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight 2, e93136 (2017).

    PubMed Central  Google Scholar 

  53. Gerards, J. et al. Impaired glucose metabolism in primary aldosteronism is associated with cortisol cosecretion. J. Clin. Endocrinol. Metab. 104, 3192–3202 (2019).

    PubMed  Google Scholar 

  54. Adolf, C. et al. Cortisol excess in patients with primary aldosteronism impacts left ventricular hypertrophy. J. Clin. Endocrinol. Metab. 103, 4543–4552 (2018).

    PubMed  Google Scholar 

  55. Zelinka, T. et al. Postoperative adrenal insufficiency in Conn’s syndrome – does it occur frequently? J. Hum. Hypertens. 36, 510–516 (2022).

    CAS  PubMed  Google Scholar 

  56. DeLozier, O. M. et al. Selective glucocorticoid replacement following unilateral adrenalectomy for hypercortisolism and primary aldosteronism. J. Clin. Endocrinol. Metab. 107, e538–e547 (2022).

    PubMed  Google Scholar 

  57. Heinrich, D. A. et al. Adrenal insufficiency after unilateral adrenalectomy in primary aldosteronism: long-term outcome and clinical impact. J. Clin. Endocrinol. Metab. 104, 5658–5664 (2019).

    PubMed  Google Scholar 

  58. Fassnacht, M. et al. Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 175, G1–G34 (2016).

    CAS  PubMed  Google Scholar 

  59. Zennaro, M. C., Boulkroun, S. & Fernandes-Rosa, F. Genetic causes of functional adrenocortical adenomas. Endocr. Rev. 38, 516–537 (2017).

    PubMed  Google Scholar 

  60. Gomez-Sanchez, C. E. et al. Development of monoclonal antibodies against human CYP11B1 and CYP11B2. Mol. Cell. Endocrinol. 383, 111–117 (2014).

    CAS  PubMed  Google Scholar 

  61. Nanba, K. et al. Genetic characteristics of aldosterone-producing adenomas in Blacks. Hypertension 73, 885–892 (2019).

    CAS  PubMed  Google Scholar 

  62. Nanba, K., Vaidya, A. & Rainey, W. E. Aging and adrenal aldosterone production. Hypertension 71, 218–223 (2018).

    CAS  PubMed  Google Scholar 

  63. Nanba, K. et al. Age-related autonomous aldosteronism. Circulation 136, 347–355 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nishimoto, K. et al. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proc. Natl Acad. Sci. USA 112, E4591–E4599 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Omata, K. et al. Aldosterone-producing cell clusters frequently harbor somatic mutations and accumulate with age in normal adrenals. J. Endocr. Soc. 1, 787–799 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Omata, K., Tomlins, S. A. & Rainey, W. E. Aldosterone-producing cell clusters in normal and pathological states. Horm. Metab. Res. 49, 951–956 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Omata, K. et al. Genetic and histopathologic intertumor heterogeneity in primary aldosteronism. J. Clin. Endocrinol. Metab. 102, 1792–1796 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. Williams, T. A. & Reincke, M. Pathophysiology and histopathology of primary aldosteronism. Trends Endocrinol. Metab. 33, 36–49 (2022).

    CAS  PubMed  Google Scholar 

  69. Baudrand, R. et al. Continuum of renin-independent aldosteronism in normotension. Hypertension 69, 950–956 (2017).

    CAS  PubMed  Google Scholar 

  70. Brown, J. M. et al. The spectrum of subclinical primary aldosteronism and incident hypertension: a cohort study. Ann. Intern. Med. 167, 630–641 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. Brown, J. M. et al. Aldosterone dysregulation with aging predicts renal vascular function and cardiovascular risk. Hypertension 63, 1205–1211 (2014).

    CAS  PubMed  Google Scholar 

  72. Markou, A. et al. Evidence of primary aldosteronism in a predominantly female cohort of normotensive individuals: a very high odds ratio for progression into arterial hypertension. J. Clin. Endocrinol. Metab. 98, 1409–1416 (2013).

    CAS  PubMed  Google Scholar 

  73. Vaidya, A. et al. Abnormal aldosterone physiology and cardiometabolic risk factors. Hypertension 61, 886–893 (2013).

    CAS  PubMed  Google Scholar 

  74. Brown, J. M. et al. The unrecognized prevalence of primary aldosteronism: a cross-sectional study. Ann. Intern. Med. 173, 10–20 (2020).

    PubMed  PubMed Central  Google Scholar 

  75. Vasan, R. S. et al. Serum aldosterone and the incidence of hypertension in nonhypertensive persons. N. Engl. J. Med. 351, 33–41 (2004).

    CAS  PubMed  Google Scholar 

  76. Bentley-Lewis, R. et al. Body mass index predicts aldosterone production in normotensive adults on a high-salt diet. J. Clin. Endocrinol. Metab. 92, 4472–4475 (2007).

    CAS  PubMed  Google Scholar 

  77. Brown, J. M. et al. Cardiac structure and function across the spectrum of aldosteronism: the atherosclerosis risk in communities study. Hypertension https://doi.org/10.1161/HYPERTENSIONAHA.122.19134 (2022).

    Article  PubMed  Google Scholar 

  78. Inoue, K. et al. Serum aldosterone concentration, blood pressure, and coronary artery calcium: the multi-ethnic study of atherosclerosis. Hypertension 76, 113–120 (2020).

    CAS  PubMed  Google Scholar 

  79. Hu, J. et al. Heightened cardiovascular risk in hypertension associated with renin-independent aldosteronism versus renin-dependent aldosteronism: a collaborative study. J. Am. Heart Assoc. 10, e023082 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Joseph, J. J. et al. Association of serum aldosterone and plasma renin activity with ambulatory blood pressure in African Americans: the Jackson Heart Study. Circulation 143, 2355–2366 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Adlin, E. V. Letter: Plasma-renin and blood-pressure. Lancet 1, 699 (1975).

    CAS  PubMed  Google Scholar 

  82. Newton-Cheh, C. et al. Clinical and genetic correlates of aldosterone-to-renin ratio and relations to blood pressure in a community sample. Hypertension 49, 846–856 (2007).

    CAS  PubMed  Google Scholar 

  83. Williams, B. et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet 386, 2059–2068 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Williams, B. et al. Endocrine and haemodynamic changes in resistant hypertension, and blood pressure responses to spironolactone or amiloride: the PATHWAY-2 mechanisms substudies. Lancet Diabetes Endocrinol. 6, 464–475 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. Carey, R. M., Douglas, J. G., Schweikert, J. R. & Liddle, G. W. The syndrome of essential hypertension and suppressed plasma renin activity. Normalization of blood pressure with spironolactone. Arch. Intern. Med. 130, 849–854 (1972).

    CAS  PubMed  Google Scholar 

  86. Käyser, S. C. et al. Study heterogeneity and estimation of prevalence of primary aldosteronism: a systematic review and meta-regression analysis. J. Clin. Endocrinol. Metab. 101, 2826–2835 (2016).

    PubMed  Google Scholar 

  87. Xu, Z. et al. Primary aldosteronism in patients in China with recently detected hypertension. J. Am. Coll. Cardiol. 75, 1913–1922 (2020).

    CAS  PubMed  Google Scholar 

  88. Libianto, R. et al. Detecting primary aldosteronism in Australian primary care: a prospective study. Med. J. Aust. 216, 408–412 (2022).

    PubMed  Google Scholar 

  89. Voulgaris, N. et al. Prevalence of primary aldosteronism across the stages of hypertension based on a new combined overnight test. Horm. Metab. Res. 53, 461–469 (2021).

    CAS  PubMed  Google Scholar 

  90. Alam, S. et al. High prevalence and a long delay in the diagnosis of primary aldosteronism among patients with young-onset hypertension. Clin. Endocrinol. 94, 895–903 (2021).

    CAS  Google Scholar 

  91. Funder, J. W. et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 101, 1889–1916 (2016).

    CAS  PubMed  Google Scholar 

  92. Carey, R. M. et al. Resistant hypertension: detection, evaluation, and management: a scientific statement from the American Heart Association. Hypertension 72, e53–e90 (2018).

    CAS  PubMed  Google Scholar 

  93. Buffolo, F. et al. Primary aldosteronism and obstructive sleep apnea: a cross-sectional multi-ethnic study. Hypertension 74, 1532–1540 (2019).

    CAS  PubMed  Google Scholar 

  94. Rossi, G. P. & Dalla Cà, A. Clinical management of primary aldosteronism: 2013 practical recommendations of the Italian Society of Hypertension (SIIA). High. Blood Press. Cardiovasc. Prev. 21, 71–75 (2014).

    CAS  PubMed  Google Scholar 

  95. Amar, L. et al. SFE/SFHTA/AFCE primary aldosteronism consensus: introduction and handbook. Ann. Endocrinol. 77, 179–186 (2016).

    Google Scholar 

  96. Gkaniatsa, E. et al. Increasing incidence of primary aldosteronism in western Sweden during 3 decades–yet an underdiagnosed disorder. J. Clin. Endocrinol. Metab. 106, e3603–e3610 (2021).

    PubMed  PubMed Central  Google Scholar 

  97. Sivarajah, M., Beninato, T. & Fahey, T. J. III Adherence to consensus guidelines for screening of primary aldosteronism in an urban healthcare system. Surgery 167, 211–215 (2020).

    PubMed  Google Scholar 

  98. Liu, Y.-Y. et al. Outcomes of a specialized clinic on rates of investigation and treatment of primary aldosteronism. JAMA Surg. 156, 541–549 (2021).

    PubMed  Google Scholar 

  99. Mulatero, P. et al. Guidelines for primary aldosteronism: uptake by primary care physicians in Europe. J. Hypertens. 34, 2253–2257 (2016).

    CAS  PubMed  Google Scholar 

  100. Yang, J., Fuller, P. J. & Stowasser, M. Is it time to screen all patients with hypertension for primary aldosteronism? Med. J. Aust. 209, 57–59 (2018).

    PubMed  Google Scholar 

  101. Burrello, J. et al. Prevalence of hypokalemia and primary aldosteronism in 5100 patients referred to a tertiary hypertension unit. Hypertension 75, 1025–1033 (2020).

    CAS  PubMed  Google Scholar 

  102. Saito, K. et al. Subtype-specific trends in the clinical picture of primary aldosteronism over a 13-year period. J. Hypertens. 39, 2325–2332 (2021).

    CAS  PubMed  Google Scholar 

  103. Hundemer, G. L. et al. Screening rates for primary aldosteronism among individuals with hypertension plus hypokalemia: a population-based retrospective cohort study. Hypertension 79, 178–186 (2022).

    CAS  PubMed  Google Scholar 

  104. Jaffe, G. et al. Screening rates for primary aldosteronism in resistant hypertension. Hypertension 75, 650–659 (2020).

    CAS  PubMed  Google Scholar 

  105. Cohen, J. B. et al. Testing for primary aldosteronism and mineralocorticoid receptor antagonist use among US veterans: a retrospective cohort study. Ann. Intern. Med. 174, 289–297 (2021).

    PubMed  Google Scholar 

  106. Lim, Y. Y. et al. Impact of Victoria’s first dedicated endocrine hypertension service on the pattern of primary aldosteronism diagnoses. Intern. Med. J. 51, 1255–1261 (2021).

    CAS  PubMed  Google Scholar 

  107. Chauhan, K. et al. Screening for primary aldosteronism is underutilised in patients with chronic kidney disease. J. Nephrol. https://doi.org/10.1007/s40620-022-01267-3 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tan, S. J., Libianto, R., Yang, J. & Wong, J. Screening for primary aldosteronism in the diabetic population: a cohort study. Intern. Med. J. https://doi.org/10.1111/imj.15690 (2022).

    Article  PubMed  Google Scholar 

  109. Turcu, A. F. et al. Primary aldosteronism screening rates differ with sex, race, and comorbidities. J. Am. Heart Assoc. 11, e025952 (2022).

    PubMed  Google Scholar 

  110. Pitt, B. et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N. Engl. J. Med. 385, 2252–2263 (2021).

    CAS  PubMed  Google Scholar 

  111. Filippatos, G. et al. Finerenone reduces new-onset atrial fibrillation in patients with chronic kidney disease and type 2 diabetes. J. Am. Coll. Cardiol. 78, 142–152 (2021).

    CAS  PubMed  Google Scholar 

  112. Filippatos, G. et al. Finerenone and cardiovascular outcomes in patients with chronic kidney disease and type 2 diabetes. Circulation 143, 540–552 (2021).

    CAS  PubMed  Google Scholar 

  113. Filippatos, G. et al. Finerenone reduces risk of incident heart failure in patients with chronic kidney disease and type 2 diabetes: analyses from the FIGARO-DKD trial. Circulation 145, 437–447 (2022).

    CAS  PubMed  Google Scholar 

  114. Chen, Y. et al. Strain imaging for the early detection of cardiac remodeling and dysfunction in primary aldosteronism. Diagnostics 12, 543 (2022).

    PubMed  PubMed Central  Google Scholar 

  115. Stowasser, M. in Encyclopedia of Endocrine Diseases 2nd edn (eds Huhtaniemi, I. & Martini, L.) 598–606 (Academic, 2019).

  116. Nishikawa, T. et al. Guidelines for the diagnosis and treatment of primary aldosteronism — the Japan Endocrine Society 2009. Endocr. J. 58, 711–721 (2011).

    CAS  PubMed  Google Scholar 

  117. Li, N. et al. Cost-effectiveness analysis of screening for primary aldosteronism in China. Clin. Endocrinol. 95, 414–422 (2021).

    Google Scholar 

  118. Buffolo, F. et al. Clinical score and machine learning-based model to predict diagnosis of primary aldosteronism in arterial hypertension. Hypertension 78, 1595–1604 (2021).

    CAS  PubMed  Google Scholar 

  119. Burrello, J. et al. Development and validation of prediction models for subtype diagnosis of patients with primary aldosteronism. J. Clin. Endocrinol. Metab. 105, dgaa379 (2020).

    PubMed  Google Scholar 

  120. Kocjan, T., Janez, A., Stankovic, M., Vidmar, G. & Jensterle, M. A new clinical prediction criterion accurately determines a subset of patients with bilateral primary aldosteronism before adrenal venous sampling. Endocr. Pract. 22, 587–594 (2016).

    PubMed  Google Scholar 

  121. Zhang, Y. et al. Identifying unilateral disease in Chinese patients with primary aldosteronism by using a modified prediction score. J. Hypertens. 35, 2486–2492 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Sam, D. et al. External validation of clinical prediction models in unilateral primary aldosteronism. Am. J. Hypertens. 35, 365–373 (2022).

    PubMed  Google Scholar 

  123. Hiramatsu, K. et al. A screening test to identify aldosterone-producing adenoma by measuring plasma renin activity. Results in hypertensive patients. Arch. Intern. Med. 141, 1589–1593 (1981).

    CAS  PubMed  Google Scholar 

  124. Yozamp, N. et al. Intraindividual variability of aldosterone concentrations in primary aldosteronism. Hypertension 77, 891–899 (2021).

    CAS  PubMed  Google Scholar 

  125. Galati, S.-J. et al. Prevelence of primary aldosteronism in an urban hypertensive population. Endocr. Pract. 22, 1296–1302 (2016).

    PubMed  Google Scholar 

  126. Stowasser, M. et al. High rate of detection of primary aldosteronism, including surgically treatable forms, after ‘non-selective’ screening of hypertensive patients. J. Hypertens. 21, 2149–2157 (2003).

    CAS  PubMed  Google Scholar 

  127. Stowasser, M. & Gordon, R. D. Aldosterone assays: an urgent need for improvement. Clin. Chem. 52, 1640–1642 (2006).

    CAS  PubMed  Google Scholar 

  128. Guo, Z. et al. Aldosterone LC-MS/MS assay-specific threshold values in screening and confirmatory testing for primary aldosteronism. J. Clin. Endocrinol. Metab. 103, 3965–3973 (2018).

    PubMed  Google Scholar 

  129. Mulatero, P. et al. Drug effects on aldosterone/plasma renin activity ratio in primary aldosteronism. Hypertension 40, 897–902 (2002).

    CAS  PubMed  Google Scholar 

  130. Tezuka, Y. & Turcu, A. F. Mineralocorticoid receptor antagonists decrease the rates of positive screening for primary aldosteronism. Endocr. Pract. 26, 1416–1424 (2020).

    PubMed  PubMed Central  Google Scholar 

  131. Pecori, A. et al. Mineralocorticoid receptor antagonist effect on aldosterone to renin ratio in patients with primary aldosteronism. J. Clin. Endocrinol. Metab. 106, e3655–e3664 (2021).

    PubMed  Google Scholar 

  132. Rossi, G. P. et al. Effects of mineralocorticoid and AT1 receptor antagonism on the aldosterone-renin ratio in primary aldosteronism–the EMIRA study. J. Clin. Endocrinol. Metab. 105, dgaa080 (2020).

    PubMed  Google Scholar 

  133. Nanba, A. T. et al. Adrenal vein sampling lateralization despite mineralocorticoid receptor antagonists exposure in primary aldosteronism. J. Clin. Endocrinol. Metab. 104, 487–492 (2019).

    PubMed  Google Scholar 

  134. Hundemer, G. L., Kline, G. A. & Leung, A. A. How common is primary aldosteronism? Curr. Opin. Nephrol. Hypertens. 30, 353–360 (2021).

    CAS  PubMed  Google Scholar 

  135. Li, X., Goswami, R., Yang, S. & Li, Q. Aldosterone/direct renin concentration ratio as a screening test for primary aldosteronism: a meta-analysis. J. Renin Angiotensin Aldosterone Syst. 17, 1470320316657450 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. Jansen, P. M. et al. Test characteristics of the aldosterone-to-renin ratio as a screening test for primary aldosteronism. J. Hypertens. 32, 115–126 (2014).

    CAS  PubMed  Google Scholar 

  137. Hung, A. et al. Performance of the aldosterone to renin ratio as a screening test for primary aldosteronism. J. Clin. Endocrinol. Metab. 106, 2423–2435 (2021).

    PubMed  Google Scholar 

  138. Funder, J. W. Primary aldosteronism: at the tipping point. Ann. Intern. Med. 173, 65–66 (2020).

    PubMed  Google Scholar 

  139. [No authors listed] Renin suppression in primary aldosteronism. JAMA 207, 747 (1969).

    Google Scholar 

  140. Oelkers, W., Diederich, S. & Bähr, V. Primary hyperaldosteronism without suppressed renin due to secondary hypertensive kidney damage. J. Clin. Endocrinol. Metab. 85, 3266–3270 (2000).

    CAS  PubMed  Google Scholar 

  141. Jansen, P. M. & Stowasser, M. Aldosterone-producing adenoma associated with non-suppressed renin: a case series. J. Hum. Hypertens. 36, 373–380 (2022).

    CAS  PubMed  Google Scholar 

  142. Wang, K. et al. Development and validation of criteria for sparing confirmatory tests in diagnosing primary aldosteronism. J. Clin. Endocrinol. Metab. 105, dgaa282 (2020).

    PubMed  Google Scholar 

  143. Umakoshi, H. et al. Role of aldosterone and potassium levels in sparing confirmatory tests in primary aldosteronism. J. Clin. Endocrinol. Metab. 105, dgz148 (2020).

    PubMed  Google Scholar 

  144. Vaidya, A. & Carey, R. M. Evolution of the primary aldosteronism syndrome: updating the approach. J. Clin. Endocrinol. Metab. 105, 3771–3783 (2020).

    PubMed Central  Google Scholar 

  145. Lim, P. O., Jung, R. T. & MacDonald, T. M. Raised aldosterone to renin ratio predicts antihypertensive efficacy of spironolactone: a prospective cohort follow-up study. Br. J. Clin. Pharmacol. 48, 756–760 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Leung, A. A. et al. Performance of confirmatory tests for diagnosing primary aldosteronism: a systematic review and meta-analysis. Hypertension https://doi.org/10.1161/HYPERTENSIONAHA.122.19377 (2022).

    Article  PubMed  Google Scholar 

  147. Wu, S. et al. Confirmatory tests for the diagnosis of primary aldosteronism: a systematic review and meta-analysis. Clin. Endocrinol. 90, 641–648 (2019).

    Google Scholar 

  148. Rossi, G. P. et al. Comparison of the captopril and the saline infusion test for excluding aldosterone-producing adenoma. Hypertension 50, 424–431 (2007).

    CAS  PubMed  Google Scholar 

  149. Song, Y. et al. Confirmatory tests for the diagnosis of primary aldosteronism: a prospective diagnostic accuracy study. Hypertension 71, 118–124 (2018).

    CAS  PubMed  Google Scholar 

  150. Stowasser, M. et al. Comparison of seated with recumbent saline suppression testing for the diagnosis of primary aldosteronism. J. Clin. Endocrinol. Metab. 103, 4113–4124 (2018).

    PubMed  Google Scholar 

  151. Thuzar, M. et al. Diagnosis of primary aldosteronism by seated saline suppression test-variability between immunoassay and HPLC-MS/MS. J. Clin. Endocrinol. Metab. 105, dgz150 (2020).

    PubMed  Google Scholar 

  152. Cornu, E. et al. Suppression of aldosterone secretion after recumbent saline infusion does not exclude lateralized primary aldosteronism. Hypertension 68, 989–994 (2016).

    CAS  PubMed  Google Scholar 

  153. Eisenhofer, G. et al. The saline infusion test for primary aldosteronism: implications of immunoassay inaccuracy. J. Clin. Endocrinol. Metab. 107, e2027–e2036 (2022).

    PubMed  Google Scholar 

  154. Liu, B. et al. Seated saline suppression test is comparable with captopril challenge test for the diagnosis of primary aldosteronism: a prospective study. Endocr. Pract. 27, 326–333 (2021).

    PubMed  Google Scholar 

  155. Markou, A. et al. Enhanced performance of a modified diagnostic test of primary aldosteronism in patients with adrenal adenomas. Eur. J. Endocrinol. 186, 265–273 (2022).

    CAS  PubMed  Google Scholar 

  156. Williams, T. A. et al. International histopathology consensus for unilateral primary aldosteronism. J. Clin. Endocrinol. Metab. 106, 42–54 (2021).

    PubMed  Google Scholar 

  157. Nanba, A. T. et al. Discordance between imaging and immunohistochemistry in unilateral primary aldosteronism. Clin. Endocrinol. 87, 665–672 (2017).

    CAS  Google Scholar 

  158. Yamazaki, Y. et al. Histopathological classification of cross-sectional image-negative hyperaldosteronism. J. Clin. Endocrinol. Metab. 102, 1182–1192 (2017).

    PubMed  Google Scholar 

  159. Omata, K. et al. Cellular and genetic causes of idiopathic hyperaldosteronism. Hypertension 72, 874–880 (2018).

    CAS  PubMed  Google Scholar 

  160. Nanba, K. & Rainey, W. E. Pathophysiology of bilateral hyperaldosteronism. Curr. Opin. Endocrinol. Diabetes Obes. 29, 233–242 (2022).

    CAS  PubMed  Google Scholar 

  161. Hacini, I. et al. Somatic mutations in adrenals from patients with primary aldosteronism not cured after adrenalectomy suggest common pathogenic mechanisms between unilateral and bilateral disease. Eur. J. Endocrinol. 185, 405–412 (2021).

    CAS  PubMed  Google Scholar 

  162. De Sousa, K. et al. Genetic, cellular, and molecular heterogeneity in adrenals with aldosterone-producing adenoma. Hypertension 75, 1034–1044 (2020).

    PubMed  Google Scholar 

  163. Nanba, K. et al. Double adrenocortical adenomas harboring independent KCNJ5 and PRKACA somatic mutations. Eur. J. Endocrinol. 175, K1–K6 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Dekkers, T. et al. Adrenal nodularity and somatic mutations in primary aldosteronism: one node is the culprit? J. Clin. Endocrinol. Metab. 99, E1341–E1351 (2014).

    CAS  PubMed  Google Scholar 

  165. Williams, T. A. et al. Outcomes after adrenalectomy for unilateral primary aldosteronism: an international consensus on outcome measures and analysis of remission rates in an international cohort. Lancet Diabetes Endocrinol. 5, 689–699 (2017).

    PubMed  PubMed Central  Google Scholar 

  166. Hundemer, G. L., Curhan, G. C., Yozamp, N., Wang, M. & Vaidya, A. Incidence of atrial fibrillation and mineralocorticoid receptor activity in patients with medically and surgically treated primary aldosteronism. JAMA Cardiol. 3, 768–774 (2018).

    PubMed  PubMed Central  Google Scholar 

  167. Hundemer, G. L., Curhan, G. C., Yozamp, N., Wang, M. & Vaidya, A. Renal outcomes in medically and surgically treated primary aldosteronism. Hypertension 72, 658–666 (2018).

    CAS  PubMed  Google Scholar 

  168. Ebbehoj, A. et al. Epidemiology of adrenal tumours in Olmsted County, Minnesota, USA: a population-based cohort study. Lancet Diabetes Endocrinol. 8, 894–902 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Umakoshi, H. et al. Accuracy of adrenal computed tomography in predicting the unilateral subtype in young patients with hypokalaemia and elevation of aldosterone in primary aldosteronism. Clin. Endocrinol. 88, 645–651 (2018).

    CAS  Google Scholar 

  170. Lim, V. et al. Accuracy of adrenal imaging and adrenal venous sampling in predicting surgical cure of primary aldosteronism. J. Clin. Endocrinol. Metab. 99, 2712–2719 (2014).

    CAS  PubMed  Google Scholar 

  171. Wannachalee, T. et al. The concordance between imaging and adrenal vein sampling varies with aldosterone-driver somatic mutation. J. Clin. Endocrinol. Metab. 105, e3628–e3637 (2020).

    PubMed Central  Google Scholar 

  172. Rossi, G. P. et al. An expert consensus statement on use of adrenal vein sampling for the subtyping of primary aldosteronism. Hypertension 63, 151–160 (2014).

    CAS  PubMed  Google Scholar 

  173. Naruse, M. et al. Japan Endocrine Society clinical practice guideline for the diagnosis and management of primary aldosteronism 2021. Endocr. J. 69, 327–359 (2022).

    PubMed  Google Scholar 

  174. Mulatero, P. et al. Subtype diagnosis, treatment, complications and outcomes of primary aldosteronism and future direction of research: a position statement and consensus of the Working Group on Endocrine Hypertension of the European Society of Hypertension. J. Hypertens. 38, 1929–1936 (2020).

    CAS  PubMed  Google Scholar 

  175. Lethielleux, G., Amar, L., Raynaud, A., Plouin, P. F. & Steichen, O. Influence of diagnostic criteria on the interpretation of adrenal vein sampling. Hypertension 65, 849–854 (2015).

    CAS  PubMed  Google Scholar 

  176. El Ghorayeb, N. et al. Basal and post-ACTH aldosterone and its ratios are useful during adrenal vein sampling in primary aldosteronism. J. Clin. Endocrinol. Metab. 101, 1826–1835 (2016).

    CAS  PubMed  Google Scholar 

  177. Desrochers, M. J. et al. Basal contralateral aldosterone suppression is rare in lateralized primary aldosteronism. Eur. J. Endocrinol. 183, 399–409 (2020).

    CAS  PubMed  Google Scholar 

  178. Dominguez, D. A. et al. Contralateral suppression index does not predict clinical cure in patients undergoing surgery for primary aldosteronism. Ann. Surg. Oncol. 28, 7487–7495 (2021).

    PubMed  Google Scholar 

  179. Monticone, S. et al. Aldosterone suppression on contralateral adrenal during adrenal vein sampling does not predict blood pressure response after adrenalectomy. J. Clin. Endocrinol. Metab. 99, 4158–4166 (2014).

    CAS  PubMed  Google Scholar 

  180. Shibayama, Y. et al. Bilateral aldosterone suppression and its resolution in adrenal vein sampling of patients with primary aldosteronism: analysis of data from the WAVES-J study. Clin. Endocrinol. 85, 696–702 (2016).

    CAS  Google Scholar 

  181. Tan, S. Y. T. et al. Bilateral aldosterone suppression in patients with right unilateral primary aldosteronism and review of the literature. J. Endocr. Soc. 4, bvaa033 (2020).

    PubMed  PubMed Central  Google Scholar 

  182. Kitamoto, T. et al. Precise mapping of intra-adrenal aldosterone activities provides a novel surgical strategy for primary aldosteronism. Hypertension 76, 976–984 (2020).

    CAS  PubMed  Google Scholar 

  183. Rossi, G. P. et al. Adrenal vein sampling for primary aldosteronism: the assessment of selectivity and lateralization of aldosterone excess baseline and after adrenocorticotropic hormone (ACTH) stimulation. J. Hypertension 26, 989–997 (2008).

    CAS  Google Scholar 

  184. Seccia, T. M. et al. Adrenocorticotropic hormone stimulation during adrenal vein sampling for identifying surgically curable subtypes of primary aldosteronism: comparison of 3 different protocols. Hypertension 53, 761–766 (2009).

    CAS  PubMed  Google Scholar 

  185. Rossi, G. P. et al. Dynamic testing with high-dose adrenocorticotrophic hormone does not improve lateralization of aldosterone oversecretion in primary aldosteronism patients. J. Hypertens. 24, 371–379 (2006).

    CAS  PubMed  Google Scholar 

  186. Takeda, Y. et al. Impact of adrenocorticotropic hormone stimulation during adrenal venous sampling on outcomes of primary aldosteronism. J. Hypertens. 37, 1077–1082 (2018).

    Google Scholar 

  187. Chee, N. Y. N. et al. Utility of adrenocorticotropic hormone in adrenal vein sampling despite the occurrence of discordant lateralization. Clin. Endocrinol. 93, 394–403 (2020).

    CAS  Google Scholar 

  188. El Ghorayeb, N., Bourdeau, I. & Lacroix, A. Role of ACTH and other hormones in the regulation of aldosterone production in primary aldosteronism. Front. Endocrinol. 7, 72 (2016).

    Google Scholar 

  189. Lim, J. S., Plaska, S. W., Rege, J., Rainey, W. E. & Turcu, A. F. Aldosterone-regulating receptors and aldosterone-driver somatic mutations. Front. Endocrinol. 12, 644382 (2021).

    Google Scholar 

  190. Wolley, M. J., Ahmed, A. H., Gordon, R. D. & Stowasser, M. Does ACTH improve the diagnostic performance of adrenal vein sampling for subtyping primary aldosteronism? Clin. Endocrinol. 85, 703–709 (2016).

    CAS  Google Scholar 

  191. Young, W. F. et al. Role for adrenal venous sampling in primary aldosteronism. Surgery 136, 1227–1235 (2004).

    PubMed  Google Scholar 

  192. Young, W. F. & Stanson, A. W. What are the keys to successful adrenal venous sampling (AVS) in patients with primary aldosteronism? Clin. Endocrinol. 70, 14–17 (2009).

    Google Scholar 

  193. Wannachalee, T. et al. Three discrete patterns of primary aldosteronism lateralization in response to cosyntropin during adrenal vein sampling. J. Clin. Endocrinol. Metab. 104, 5867–5876 (2019).

    PubMed  PubMed Central  Google Scholar 

  194. Rossi, G. P. et al. The Adrenal Vein Sampling International Study (AVIS) for identifying the major subtypes of primary aldosteronism. J. Clin. Endocrinol. Metab. 97, 1606–1614 (2012).

    CAS  PubMed  Google Scholar 

  195. Turcu, A. F. & Auchus, R. Approach to the patient with primary aldosteronism: utility and limitations of adrenal vein sampling. J. Clin. Endocrinol. Metab. 106, 1195–1208 (2021).

    PubMed  Google Scholar 

  196. Almarzooqi, M. K. et al. Adrenal vein sampling in primary aldosteronism: concordance of simultaneous vs sequential sampling. Eur. J. Endocrinol. 176, 159–167 (2017).

    CAS  PubMed  Google Scholar 

  197. Seccia, T. M. et al. A stress reaction affects assessment of selectivity of adrenal venous sampling and of lateralization of aldosterone excess in primary aldosteronism. Eur. J. Endocrinol. 166, 869–875 (2012).

    CAS  PubMed  Google Scholar 

  198. Rossi, G. P. et al. Identification of the etiology of primary aldosteronism with adrenal vein sampling in patients with equivocal computed tomography and magnetic resonance findings: results in 104 consecutive cases. J. Clin. Endocrinol. Metab. 86, 1083–1090 (2001).

    CAS  PubMed  Google Scholar 

  199. Monticone, S. et al. Adrenal vein sampling in primary aldosteronism: towards a standardised protocol. Lancet Diabetes Endocrinol. 3, 296–303 (2015).

    CAS  PubMed  Google Scholar 

  200. Rossi, G. P. et al. Clinical outcomes of 1625 patients with primary aldosteronism subtyped with adrenal vein sampling. Hypertension 74, 800–808 (2019).

    CAS  PubMed  Google Scholar 

  201. Umakoshi, H. et al. Correlation between lateralization index of adrenal venous sampling and standardized outcome in primary aldosteronism. J. Endocr. Soc. 2, 893–902 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Peng, K. Y. et al. Presence of subclinical hypercortisolism in clinical aldosterone-producing adenomas predicts lower clinical success. Hypertension 76, 1537–1544 (2020).

    CAS  PubMed  Google Scholar 

  203. Fallo, F. et al. Histopathological and genetic characterization of aldosterone-producing adenomas with concurrent subclinical cortisol hypersecretion: a case series. Endocrine 58, 503–512 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Kline, G. A. et al. Apparent failed and discordant adrenal vein sampling: a potential confounding role of cortisol cosecretion? Clin. Endocrinol. 96, 123–131 (2022).

    CAS  Google Scholar 

  205. O’Toole, S. M. et al. Low grade cortisol co-secretion has limited impact on ACTH-stimulated AVS parameters in primary aldosteronism. J. Clin. Endocrinol. Metab. 105, dgaa519 (2020).

    PubMed  Google Scholar 

  206. Dekkers, T. et al. Plasma metanephrine for assessing the selectivity of adrenal venous sampling. Hypertension 62, 1152–1157 (2013).

    CAS  PubMed  Google Scholar 

  207. Eisenhofer, G. et al. Mass spectrometry-based adrenal and peripheral venous steroid profiling for subtyping primary aldosteronism. Clin. Chem. 62, 514–524 (2016).

    PubMed  Google Scholar 

  208. Li, H. et al. Adrenal androgen measurement for assessing the selectivity of adrenal venous sampling in primary aldosteronism. Steroids 134, 16–21 (2018).

    CAS  PubMed  Google Scholar 

  209. Turcu, A. F. et al. Comprehensive analysis of steroid biomarkers for guiding primary aldosteronism subtyping. Hypertension 75, 183–192 (2020).

    CAS  PubMed  Google Scholar 

  210. Zhou, Y. et al. Diagnostic accuracy of adrenal imaging for subtype diagnosis in primary aldosteronism: systematic review and meta-analysis. BMJ Open 10, e038489 (2020).

    PubMed  PubMed Central  Google Scholar 

  211. Dekkers, T. et al. Adrenal vein sampling versus CT scan to determine treatment in primary aldosteronism: an outcome-based randomised diagnostic trial. Lancet Diabetes Endocrinol. 4, 739–746 (2016).

    PubMed  Google Scholar 

  212. Rossi, G. P. & Funder, J. W. Adrenal venous sampling versus computed tomographic scan to determine treatment in primary aldosteronism (the SPARTACUS trial): a critique. Hypertension 69, 396–397 (2017).

    CAS  PubMed  Google Scholar 

  213. Beuschlein, F. et al. The SPARTACUS trial: controversies and unresolved issues. Horm. Metab. Res. 49, 936–942 (2017).

    CAS  PubMed  Google Scholar 

  214. Williams, T. A. et al. Computed tomography and adrenal venous sampling in the diagnosis of unilateral primary aldosteronism. Hypertension 72, 641–649 (2018).

    CAS  PubMed  Google Scholar 

  215. Stowasser, M., Bachmann, A. W., Tunny, T. J. & Gordon, R. D. Production of 18-oxo-cortisol in subtypes of primary aldosteronism. Clin. Exp. Pharmacol. Physiol. 23, 591–593 (1996).

    CAS  PubMed  Google Scholar 

  216. Mosso, L., Gomez-Sanchez, C. E., Foecking, M. F. & Fardella, C. Serum 18-hydroxycortisol in primary aldosteronism, hypertension, and normotensives. Hypertension 38, 688–691 (2001).

    CAS  PubMed  Google Scholar 

  217. Gordon, R. D., Hamlet, S. M., Tunny, T. J., Gomez-Sanchez, C. E. & Jayasinghe, L. S. Distinguishing aldosterone-producing adenoma from other forms of hyperaldosteronism and lateralizing the tumour pre-operatively. Clin. Exp. Pharmacol. Physiol. 13, 325–328 (1986).

    CAS  PubMed  Google Scholar 

  218. Chu, M. D. & Ulick, S. Isolation and identification of 18-hydroxycortisol from the urine of patients with primary aldosteronism. J. Biol. Chem. 257, 2218–2224 (1982).

    CAS  PubMed  Google Scholar 

  219. Ulick, S., Blumenfeld, J. D., Atlas, S. A., Wang, J. Z. & Vaughan, E. D. Jr The unique steroidogenesis of the aldosteronoma in the differential diagnosis of primary aldosteronism. J. Clin. Endocrinol. Metab. 76, 873–878 (1993).

    CAS  PubMed  Google Scholar 

  220. Hamlet, S. M., Gordon, R. D., Gomez-Sanchez, C. E., Tunny, T. J. & Klemm, S. A. Adrenal transitional zone steroids, 18-oxo and 18-hydroxycortisol, useful in the diagnosis of primary aldosteronism, are ACTH-dependent. Clin. Exp. Pharmacol. Physiol. 15, 317–322 (1988).

    CAS  PubMed  Google Scholar 

  221. Gomez-Sanchez, C. E. et al. Elevated urinary excretion of 18-oxocortisol in glucocorticoid-suppressible aldosteronism. J. Clin. Endocrinol. Metab. 59, 1022–1024 (1984).

    CAS  PubMed  Google Scholar 

  222. Satoh, F. et al. Measurement of peripheral plasma 18-oxocortisol can discriminate unilateral adenoma from bilateral diseases in patients with primary aldosteronism. Hypertension 65, 1096–1102 (2015).

    CAS  PubMed  Google Scholar 

  223. Zheng, F. F. et al. Clinical characteristics of somatic mutations in Chinese patients with aldosterone-producing adenoma. Hypertension 65, 622–628 (2015).

    CAS  PubMed  Google Scholar 

  224. Taguchi, R. et al. Expression and mutations of KCNJ5 mRNA in Japanese patients with aldosterone-producing adenomas. J. Clin. Endocrinol. Metab. 97, 1311–1319 (2012).

    CAS  PubMed  Google Scholar 

  225. Akerstrom, T. et al. Comprehensive re-sequencing of adrenal aldosterone producing lesions reveal three somatic mutations near the KCNJ5 potassium channel selectivity filter. PLoS ONE 7, e41926 (2012).

    PubMed  PubMed Central  Google Scholar 

  226. Boulkroun, S. et al. Prevalence, clinical, and molecular correlates of KCNJ5 mutations in primary aldosteronism. Hypertension 59, 592–598 (2012).

    CAS  PubMed  Google Scholar 

  227. Azizan, E. A. et al. Somatic mutations affecting the selectivity filter of KCNJ5 are frequent in 2 large unselected collections of adrenal aldosteronomas. Hypertension 59, 587–591 (2012).

    CAS  PubMed  Google Scholar 

  228. Monticone, S. et al. Effect of KCNJ5 mutations on gene expression in aldosterone-producing adenomas and adrenocortical cells. J. Clin. Endocrinol. Metab. 97, E1567–E1572 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Nanba, K. et al. Targeted molecular characterization of aldosterone-producing adenomas in white Americans. J. Clin. Endocrinol. Metab. 103, 3869–3876 (2018).

    PubMed  PubMed Central  Google Scholar 

  230. Azizan, E. A. et al. Microarray, qPCR, and KCNJ5 sequencing of aldosterone-producing adenomas reveal differences in genotype and phenotype between zona glomerulosa- and zona fasciculata-like tumors. J. Clin. Endocrinol. Metab. 97, E819–E829 (2012).

    CAS  PubMed  Google Scholar 

  231. Tezuka, Y. et al. 18-Oxocortisol synthesis in aldosterone-producing adrenocortical adenoma and significance of KCNJ5 mutation status. Hypertension 73, 1283–1290 (2019).

    CAS  PubMed  Google Scholar 

  232. Nakamura, Y. et al. Intratumoral heterogeneity of steroidogenesis in aldosterone-producing adenoma revealed by intensive double- and triple-immunostaining for CYP11B2/B1 and CYP17. Mol. Cell Endocrinol. 422, 57–63 (2016).

    CAS  PubMed  Google Scholar 

  233. Eisenhofer, G. et al. Use of steroid profiling combined with machine learning for identification and subtype classification in primary aldosteronism. JAMA Netw. Open 3, e2016209 (2020).

    PubMed  PubMed Central  Google Scholar 

  234. Wong, K. K., Komissarova, M., Avram, A. M., Fig, L. M. & Gross, M. D. Adrenal cortical imaging with I-131 NP-59 SPECT-CT. Clin. Nucl. Med. 35, 865–869 (2010).

    PubMed  Google Scholar 

  235. Burton, T. J. et al. Evaluation of the sensitivity and specificity of (11)C-metomidate positron emission tomography (PET)-CT for lateralizing aldosterone secretion by Conn’s adenomas. J. Clin. Endocrinol. Metab. 97, 100–109 (2012).

    CAS  PubMed  Google Scholar 

  236. Heinze, B. et al. Targeting CXCR4 (CXC chemokine receptor type 4) for molecular imaging of aldosterone-producing adenoma. Hypertension 71, 317–325 (2018).

    CAS  PubMed  Google Scholar 

  237. Sander, K. et al. Development of [(18)F]AldoView as the first highly selective aldosterone synthase PET tracer for imaging of primary hyperaldosteronism. J. Med. Chem. 64, 9321–9329 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Kaneko, H. et al. Machine learning based models for prediction of subtype diagnosis of primary aldosteronism using blood test. Sci. Rep. 11, 9140 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Kobayashi, H. et al. Development and validation of subtype prediction scores for the workup of primary aldosteronism. J. Hypertens. 36, 2269–2276 (2018).

    CAS  PubMed  Google Scholar 

  240. Nagano, H. et al. Aldosterone reduction rate after saline infusion test may be a novel prediction in patients with primary aldosteronism. J. Clin. Endocrinol. Metab. 105, dgz092 (2020).

    PubMed  Google Scholar 

  241. Umakoshi, H. et al. Significance of computed tomography and serum potassium in predicting subtype diagnosis of primary aldosteronism. J. Clin. Endocrinol. Metab. 103, 900–908 (2018).

    PubMed  Google Scholar 

  242. Hashimura, H. et al. Saline suppression test parameters may predict bilateral subtypes of primary aldosteronism. Clin. Endocrinol. 89, 308–313 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

A.F.T. was supported by grants 2019087 from the Doris Duke Charitable Foundation, R01HL155834 from the National Heart, Lung, and Blood Institute, and UL1TR002240 from the Michigan Institute for Clinical and Health Research. A.V. was supported by the National Institute of Diabetes and Digestive and Kidney Diseases under award R01 DK115392-04 and the National Institute of Heart, Lung, and Blood Disorders under award R01 HL153004 and by the Brigham and Women’s Hospital Department of Medicine Innovation Evergreen Fund Award. J.Y. was supported by the National Health and Medical Research Council Investigator Grant APP1194576.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Adina F. Turcu.

Ethics declarations

Competing interests

A.F.T. has received consulting fees from CinCor Pharma and PhaseBio. A.V. reports consulting activities with Mineralys Therapeutics, Corcept Therapeutics, and HRA Pharma, all unrelated to the current work. J.Y. declares no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Jaap Deinum and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turcu, A.F., Yang, J. & Vaidya, A. Primary aldosteronism — a multidimensional syndrome. Nat Rev Endocrinol 18, 665–682 (2022). https://doi.org/10.1038/s41574-022-00730-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-022-00730-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing