Skip to main content
Log in

A novel shaping pulse in faster-than-Nyquist system

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, a novel shaping pulse called root better pulse in faster-than-Nyquist (FTN) system is proposed. Compared to the conventional root raised cosine pulse in FTN system with roll factor 0.1, when bit error rate (BER) is \(10^{-5}\), the proposed root better pulse in FTN system can obtain 0.65 dB and 0.60 dB performance gain for time packing factor at 0.85 and 0.90, respectively. The theoretical average mutual information analysis and simulated BER results both show that the proposed root better pulse in FTN system is an efficient scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nguyen, D. C., et al. (2022). 6G internet of things: A Comprehensive Survey. IEEE Internet of Things Journal, 9(1), 359–383.

    Article  Google Scholar 

  2. Mao, T., & Wang, Z. (2021). Terahertz wireless communications with flexible index modulation aided pilot design. IEEE Journal on Selected Areas in Communications, 39(6), 1651–1662.

    Article  Google Scholar 

  3. You, L., Xiong, J., Ng, D. W. K., Yuen, C., Wang, W., & Gao, X. (2021). Energy efficiency and spectral efficiency tradeoff in RIS-aided multiuser MIMO uplink transmission. IEEE Transactions on Signal Processing, 69, 1407–1421.

    Article  Google Scholar 

  4. Chen, S., Liang, Y.-C., Sun, S., Kang, S., Cheng, W., & Peng, M. (2020). Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage. Capacity, User Data-Rate and Movement Speed, in IEEE Wireless Communications, 27(2), 218–228.

    Google Scholar 

  5. Mazo, J. E. (1975). Faster-than-Nyquist signaling. Bell System Technical Journal, 54(8), 1451–1462.

    Article  Google Scholar 

  6. Anderson, J. B., Rusek, F. & Wall, V. (2013). Faster-than-Nyquist signaling. In: Proceedings of the IEEE (Vol. 101, no. 8, pp. 1817–1830).

  7. Liveris, A. D., & Georghiades, C. N. (2003). Exploiting faster-than-Nyquist signaling. IEEE Transactions on Communications, 51(9), 1502–1511.

    Article  Google Scholar 

  8. Rusek, F., & Anderson, J. B. (2008). Non binary and precoded faster than Nyquist signaling. IEEE Transactions on Communications, 56(5), 808–817.

    Article  Google Scholar 

  9. Rusek, F., & Anderson, J. B. (2009). Constrained capacities for faster-than-Nyquist signaling. IEEE Transactions on Information Theory, 55(2), 764–775.

    Article  Google Scholar 

  10. Fan, J., Guo, S., Zhou, X., Ren, Y., Li, G. Y., & Chen, X. (2017). Faster-than-Nyquist signaling: an overview. IEEE Access, 5, 1925–1940.

    Article  Google Scholar 

  11. Zhou, J., Li, D., Wang, X., & Generalized faster-than-Nyquist signaling,. (2012). IEEE international symposium on information theory proceedings. Cambridge, MA, 2012 (pp. 1478–1482).

  12. Song, P., Gong, F., Li, Q., Li, G., & Ding, H. (2020). Receiver design for faster-than-Nyquist signaling: Deep-learning-based architectures. IEEE Access, 8, 68866–68873.

    Article  Google Scholar 

  13. Mingqi, L., Yaqiu, P., Shihao, L., & Jingfeng, T. (2017). A DFT based block transmission scheme for FTN signaling. In: 2017 23rd Asia-Pacific conference on communications (APCC) (pp. 1–6).

  14. Li, S., Yuan, W., Yuan, J., Bai, B., Wing Kwan Ng, D., & Hanzo, L. (2020). Time-domain vs. frequency-domain equalization for FTN signaling. IEEE Transactions on Vehicular Technology, 69(8), 9174–9179.

    Article  Google Scholar 

  15. Ishihara, T., Sugiura, S., & Hanzo, L. (2021). The evolution of faster-than-Nyquist signaling. IEEE Access, 9, 86535–86564.

    Article  Google Scholar 

  16. Ishihara, T., & Sugiura, S. (2022). Reduced-complexity FFT-spread multicarrier faster-than-Nyquist signaling in frequency-selective fading channel. IEEE Open Journal of the Communications Society, 3, 530–542.

    Article  Google Scholar 

  17. Barbieri, A., Fertonani, D., & Colavolpe, G. (2009). Time-frequency packing for linear modulations: spectral efficiency and practical detection schemes. IEEE Transactions on Communications, 57(10), 2951–2959.

    Article  Google Scholar 

  18. Forney, G. (1972). Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. IEEE Transactions on Information Theory, 18(3), 363–378.

    Article  Google Scholar 

  19. Rusek, F., Colavolpe, G., & Sundberg, C. E. W. (2015). 40 Years with the ungerboeck model: a look at its potentialities [lecture notes]. IEEE Signal Processing Magazine, 32(3), 156–161.

    Article  Google Scholar 

  20. Colavolpe, G., & Barbieri, A. (2005). On MAP symbol detection for ISI channels using the ungerboeck observation model. IEEE Communications Letters, 9(8), 720–722.

    Article  Google Scholar 

  21. Nyquist, H. (1928). Certain topics in telegraph transmission theory. Transactions of the American Institute of Electrical Engineers, 47(2), 617–644.

    Article  Google Scholar 

  22. Beaulieu, N. C., Tan, C. C., & Damen, M. O. (2001). A better than Nyquist pulse. IEEE Communications Letters, 5(9), 367–368.

    Article  Google Scholar 

  23. Assalini, A., & Tonello, A. M. (2004). Improved Nyquist pulses. IEEE Communications Letters, 8(2), 87–89.

    Article  Google Scholar 

  24. Caire, G., Taricco, G., & Biglieri, E. (1998). Bit-interleaved coded modulation. IEEE Transactions on Information Theory, 44(3), 927–946.

    Article  Google Scholar 

  25. Arnold, D. M., Loeliger, H. A., Vontobel, P. O., Kavcic, A., & Zeng, W. (2006). Simulation-based computation of information rates for channels with memory. IEEE Transactions on Information Theory, 52(8), 3498–3508.

    Article  Google Scholar 

  26. Piemontese, A., Modenini, A., Colavolpe, G., & Alagha, N. S. (2013). Improving the spectral efficiency of nonlinear satellite systems through time-frequency packing and advanced receiver processing. IEEE Transactions on Communications, 61(8), 3404–3412.

    Article  Google Scholar 

  27. Che, H., Wu, Z., Kang, W., Optimization, inner code, & for high rate faster-than-Nyquist,. (2019). IEEE wireless communications and networking conference (WCNC). Marrakesh, Morocco, 2019 (pp. 1–6).

  28. Kang, W., & Wu, Z. (2020). Probabilistic Shaping in Faster-Than-Nyquist System. IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 2020, 1–6.

    Google Scholar 

  29. Kang, W., Che, H., & Zhu, K. (2020). Precoding Optimization for Faster-Than-Nyquist Signaling With Probabilistic Shaping. IEEE Transactions on Vehicular Technology, 69(10), 11470–11478.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Kang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Declarations

Please note that submissions that do not include required statements will be returned as incomplete.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, W. A novel shaping pulse in faster-than-Nyquist system. Telecommun Syst 81, 333–340 (2022). https://doi.org/10.1007/s11235-022-00949-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00949-4

Keywords

Navigation