Skip to main content

Advertisement

Log in

On exploring bivariate and trivariate maps as visualization tools for spatial associations in digital soil mapping: A focus on soil properties

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

The benefits of digital soil maps cannot be overemphasised. For many years, researchers have mapped different soil classes, properties and processes while identifying the spatial associations between soil properties using side-by-side visualization maps. Although this is acceptable, it may be difficult to identify complex spatial associations between the mapped soil properties. For some, the task may be challenging owing to multiple times of side-by-side placing of the maps and the possible application of none user-friendly colour palettes and or schemes. Innovative tools are proposed for visualizing and identifying spatial associations between digital soil maps (raster layers) using bivariate and trivariate maps. These tools are applied in a case study to identify the spatial interactions between pH and selected macro-nutrients [nitrogen (N) and potassium (K)] of similar locality (Czech Republic), resolution and scale. This study further gives a brief overview of the applicability of bivariate and trivariate maps following the digital soil mapping process. Results show that bivariate and trivariate maps are effective for visualizing complex associations between pH and macro-nutrients. However, precautionary measures should be taken while applying bivariate and trivariate maps to ensure they are self-explanatory and that the legend colour schemes applied are user-friendly. Also, the variables mapped should be related. In this case, pH is a key soil quality indicator that affects macro-nutrient availability in soils.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The LUCAS soil data used were obtained with written permission from the European Soil Data Centre (ESDAC).

Code availability

The R codes used in this study are openly available from the corresponding author.

References

  • Albanese, S., Cicchella, D., De Vivo, B., Lima, A., Civitillo, D., Cosenza, A., et al. (2011). Advancements in urban geochemical mapping of the Naples metropolitan area: Colour composite maps and results from an urban Brownfield site. In C. C. Johnson, A. Demetriades, J. Locutura, & R. T. Ottesen (Eds.), Mapping the chemical environment of urban areas (pp. 410–423). Wiley.

    Chapter  Google Scholar 

  • Arnold, J. B., Daroczi, G., Werth, B., Weitzner, B., Kunst, J., & Auguie, B. (2015). Package ‘ggthemes’. Retrieved August, 2022, from https://cran.microsoft.com/snapshot/2015-07-10/web/packages/ggthemes/ggthemes.pdf

  • Auguie, B., & Antonov, A. (2017). Package ‘gridExtra’. Retrieved August, 2022, from https://cran.r-project.org/web/packages/gridExtra/gridExtra.pdf

  • Bao, C., Xu, M., & Sun, S. (2019). China’s land uses in the multi-region input–output framework. International Journal of Environmental Research and Public Health, 16(16), 2940.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barlow, K. M., Mortensen, D. A., & Drohan, P. J. (2020). Soil pH influences patterns of plant community composition after restoration with native-based seed mixes. Restoration Ecology, 28(4), 869–879.

    Article  Google Scholar 

  • Belote, R. T., Dietz, M. S., Jenkins, C. N., McKinley, P. S., Irwin, G. H., Fullman, T. J., et al. (2017). Wild, connected, and diverse: Building a more resilient system of protected areas. Ecological Applications, 27(4), 1050–1056.

    Article  PubMed  Google Scholar 

  • Beucher, A., Rasmussen, C. B., Moeslund, T. B., & Greve, M. H. (2022). Interpretation of convolutional neural networks for acid sulfate soil classification. Frontiers in Environmental Science, 9, 809995. https://doi.org/10.3389/fenvs.2021.809995

    Article  Google Scholar 

  • Bivand, R., Denney, B., Dunlap, R., Hernangómez, D., Ono, H., & Parry, J. (2022). Package ‘classInt’. Retrieved August, 2022, from https://cran.r-project.org/web/packages/classInt/classInt.pdf

  • Borůvka, L., Vašát, R., Němeček, K., Novotný, R., Šrámek, V., Vacek, O., et al. (2020). Application of regression-kriging and sequential Gaussian simulation for the delineation of forest areas potentially suitable for liming in the Jizera Mountains region, Czech Republic. Geoderma Regional, 21, e00286.

    Article  Google Scholar 

  • Brady, N. C. (1990). The nature and properties of soils (10th ed., p. 62). Macmillan Publishing Company.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Breiman, L., & Cutler, A. (2018). randomForest: Breiman and Cutler’s random forests for classification and regression. Version 4.6–14. Retrieved September, 2021, from https://CRAN.R-project.org/package=randomForest

  • Bremner, J. M. (1996). Nitrogen-total. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of soil analysis: Part 3 chemical methods (Vol. 5, pp. 1085–1121). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

    Google Scholar 

  • Cánovas, F. M., Cañas, R. A., de la Torre, F. N., Pascual, M. B., Castro-Rodríguez, V., & Avila, C. (2018). Nitrogen metabolism and biomass production in forest trees. Frontiers in Plant Science, 9, 1449.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carstensen, L. W. (1984). Perceptions of variable similarity on bivariate choroplethic maps. The Cartographic Journal, 21(1), 23–29.

    Article  Google Scholar 

  • Chabala, L. M., Mulolwa, A., & Lungu, O. (2014). Mapping the spatial variability of soil acidity in Zambia. Agronomy, 4(4), 452–461.

    Article  CAS  Google Scholar 

  • Chen, S., Liang, Z., Webster, R., Zhang, G., Zhou, Y., Teng, H., et al. (2019). A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution. Science of the Total Environment, 655, 273–283.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., Richer-de-Forges, A. C., Mulder, V. L., Martelet, G., Loiseau, T., Lehmann, S., et al. (2021). Digital mapping of the soil thickness of loess deposits over a calcareous bedrock in central France. Catena, 198, 105062.

    Article  Google Scholar 

  • Chytrý, M. (2017). Current vegetation of the Czech Republic. In M. Chytrý, J. Danihelka, Z. Kaplan, & P. Pyšek (Eds.), Flora and vegetation of the Czech Republic (pp. 229–337). Springer.

    Chapter  Google Scholar 

  • Dowle, M., Srinivasan, A., Gorecki, J., Chirico, M., Stetsenko, P., & Short, T. (2021). Package ‘data.table’. Retrieved August, 2022, from https://cran.r-project.org/web/packages/data.table/data.table.pdf

  • European Soil Data Centre (ESDAC). (2021). European Commission, Joint Research Centre. Retrieved August, 2022, from https://esdac.jrc.ec.europa.eu

  • Fisher, W. D. (1958). On grouping for maximum homogeneity. Journal of the American Statistical Association, 53, 789–798.

    Article  Google Scholar 

  • Foster, M. (2019). Statistical mapping (enumeration, normalization, classification). In J. P. Wilson (Ed.), The geographic information science and technology body of knowledge (Q2 ed.). USC.

    Google Scholar 

  • Fox, E. W., Ver Hoef, J. M., & Olsen, A. R. (2020). Comparing spatial regression to random forests for large environmental data sets. PLoS ONE, 15(3), e0229509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guagliardi, I., Zuzolo, D., Albanese, S., Lima, A., Cerino, P., Pizzolante, A., et al. (2020). Uranium, thorium and potassium insights on Campania region (Italy) soils: Sources patterns based on compositional data analysis and fractal model. Journal of Geochemical Exploration, 212, 106508.

    Article  CAS  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. Springer. https://doi.org/10.1007/978-0-387-84858-7

    Book  Google Scholar 

  • Helfenstein, A., Mulder, V. L., Heuvelink, G. B., & Okx, J. P. (2022). Tier 4 maps of soil pH at 25 m resolution for the Netherlands. Geoderma, 410, 115659.

    Article  CAS  Google Scholar 

  • Hengl, T., Rossiter, D. G., & Husnjak, S. (2002). Mapping soil properties from an existing national soil data set using freely available ancillary data. In Proceedings of the 17th World Congress of Soil Science, Paper no. 1140 (p. 1481). IUSS.

  • Hijmans, R. J., van Etten, J., Sumner, M., Cheng, J., Baston, D., & Bevan, A. (2022). Package ‘raster’. Retrieved August, 2022, from https://cran.r-project.org/web/packages/raster/raster.pdf

  • Hong, Y., Chen, S., Chen, Y., Linderman, M., Mouazen, A. M., Liu, Y., et al. (2020). Comparing laboratory and airborne hyperspectral data for the estimation and mapping of topsoil organic carbon: Feature selection coupled with random forest. Soil and Tillage Research, 199, 104589.

    Article  Google Scholar 

  • Horneck, D. A., Sullivan, D. M., Owen, J. S., & Hart, J. M. (2011). Soil test interpretation guide. Retrieved October, 2021, from https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/ec1478.pdf

  • Horrocks, R. D., & Vallentine, J. F. (1999). Soil fertility and forage production. In R. D. Horrocks & J. F. Valentine (Eds.), Harvested forages (pp. 187–224). Academic Press.

    Chapter  Google Scholar 

  • Ippoliti, C., Candeloro, L., Gilbert, M., Goffredo, M., Mancini, G., Curci, G., et al. (2019). Defining ecological regions in Italy based on a multivariate clustering approach: A first step towards a targeted vector borne disease surveillance. PLoS ONE, 14(7), e0219072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, A., Fernandez-Ugalde, O., & Scarpa, S. (2020). LUCAS 2015 topsoil survey. Presentation of dataset and results, EUR 30332 EN. Publications Office of the European Union.

    Google Scholar 

  • Kebonye, N. M., Agyeman, P. C., & Biney, J. K. (2022a). Optimized modelling of countrywide soil organic carbon levels via an interpretable decision tree. Smart Agricultural Technology, 3, 100106.

    Article  Google Scholar 

  • Kebonye, N. M., Agyeman, P. C., & Biney, J. K. (2022b). Using an innovative bivariate colour scheme to infer spatial links and patterns between prediction and uncertainty: an example based on an explainable soil CN ratio model. Modeling Earth Systems and Environment, 1–8.

  • Kebonye, N. M., Eze, P. N., & Akinyemi, F. O. (2017). Long term treated wastewater impacts and source identification of heavy metals in semi-arid soils of Central Botswana. Geoderma Regional, 10, 200–214.

    Article  Google Scholar 

  • Kebonye, N. M., Eze, P. N., John, K., Gholizadeh, A., Dajčl, J., Drábek, O., et al. (2021b). Self-organizing map artificial neural networks and sequential Gaussian simulation technique for mapping potentially toxic element hotspots in polluted mining soils. Journal of Geochemical Exploration, 222, 106680.

    Article  CAS  Google Scholar 

  • Kebonye, N. M., John, K., Chakraborty, S., Agyeman, P. C., Ahado, S. K., Eze, P. N., Němeček, K., Drábek, O., & Borůvka, L. (2021a). Comparison of multivariate methods for arsenic estimation and mapping in floodplain soil via portable X-ray fluorescence spectroscopy. Geoderma, 384, 114792.

    Article  CAS  Google Scholar 

  • Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., & Engelhardt, A. (2022). Package ‘caret’. Retrieved August, 2022, from https://cran.r-project.org/web/packages/caret/caret.pdf

  • Lang, M., Alleaume, S., Luque, S., Baghdadi, N., & Féret, J. B. (2019). Complementarity between textural and radiometric indices from airborne and spaceborne multi VHSR Data: Disentangling the complexity of heterogeneous landscape matrix. Remote Sensing, 11(6), 693.

    Article  Google Scholar 

  • Lebrini, Y., Boudhar, A., Laamrani, A., Htitiou, A., Lionboui, H., Salhi, A., et al. (2021). Mapping and characterization of phenological changes over various farming systems in an arid and semi-arid region using multitemporal moderate spatial resolution data. Remote Sensing, 13(4), 578.

    Article  Google Scholar 

  • Leutner, B., Horning, N., Schwalb-Willmann, J., & Hijmans, R. J. (2022). Package ‘RStoolbox’. Retrieved August, 2022, from https://cran.r-project.org/web/packages/RStoolbox/RStoolbox.pdf

  • Liu, B., Sze, J., Li, L., Ornstein, K. A., & Taioli, E. (2020). Bivariate spatial pattern between smoking prevalence and lung cancer screening in US counties. International Journal of Environmental Research and Public Health, 17(10), 3383.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loiseau, T., de Forges, A. R., Roudier, P., Ducommun, C., Chen, S., Lagacherie, P., et al. (2020a). Essais de représentation cartographique de l’incertitude pour les utilisateurs de cartographies des sols par modélisation statistique (Attempts to map uncertainty for users of soil maps by statistical modeling). Etude Et Gestion Des Sols, 27(1), 257–275.

    Google Scholar 

  • Loiseau, T., Richer-de-Forges, A. C., Martelet, G., Bialkowski, A., Nehlig, P., & Arrouays, D. (2020b). Could airborne gamma-spectrometric data replace lithological maps as co-variates for digital soil mapping of topsoil particle-size distribution? A case study in Western France. Geoderma Regional, 22, e00295.

    Article  Google Scholar 

  • Maiti, A., Zhang, Q., Sannigrahi, S., Pramanik, S., Chakraborti, S., Cerda, A., et al. (2021). Exploring spatiotemporal effects of the driving factors on COVID-19 incidences in the contiguous United States. Sustainable Cities and Society, 68, 102784.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matzner, E. (1992). Acidification of forests and forest soils: Current status. Studies in Environmental Science, 50, 77–86.

    Article  CAS  Google Scholar 

  • McBratney, A. B., Santos, M. M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52.

    Article  Google Scholar 

  • Minasny, B., Hong, S. Y., Hartemink, A. E., Kim, Y. H., & Kang, S. S. (2016). Soil pH increase under paddy in South Korea between 2000 and 2012. Agriculture, Ecosystems and Environment, 221, 205–213.

    Article  Google Scholar 

  • Moos, N., Juergens, C., & Redecker, A. P. (2021). Geo-spatial analysis of population density and annual income to identify large-scale socio-demographic disparities. ISPRS International Journal of Geo-Information, 10(7), 432.

    Article  Google Scholar 

  • Mulder, V. L., Lacoste, M., Richer-de-Forges, A. C., & Arrouays, D. (2016). GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth. Science of the Total Environment, 573, 1352–1369.

    Article  CAS  PubMed  Google Scholar 

  • Odeh, I. O., McBratney, A. B., & Chittleborough, D. J. (1995). Further results on prediction of soil properties from terrain attributes: Heterotopic cokriging and regression-kriging. Geoderma, 67(3–4), 215–226.

    Article  Google Scholar 

  • Pedersen, T. L. (2020). Package ‘patchwork’. Retrieved August, 2022, from https://cran.r-project.org/web/packages/patchwork/patchwork.pdf

  • Probst, P., & Janitza, S. (2020). Package ‘varImp’. Version 0.4. Retrieved February, 2022, from https://cran.r-project.org/web/packages/varImp/varImp.pdf

  • Roudier, P., Burge, O. R., Richardson, S. J., McCarthy, J. K., Grealish, G. J., & Ausseil, A. G. (2020). National scale 3D mapping of soil pH using a data augmentation approach. Remote Sensing, 12(18), 2872.

    Article  Google Scholar 

  • Ryo, M., Angelov, B., Mammola, S., Kass, J. M., Benito, B. M., & Hartig, F. (2021). Explainable artificial intelligence enhances the ecological interpretability of black-box species distribution models. Ecography, 44(2), 199–205.

    Article  Google Scholar 

  • Scornet, E. (2017). Tuning parameters in random forests. ESAIM: Proceedings and Surveys, 60, 144–162. https://doi.org/10.1051/proc/201760144

    Article  Google Scholar 

  • Shamsudduha, M., Joseph, G., Khan, M. R., Zahid, A., & Ahmed, K. M. U. (2019). Multi-hazard groundwater risks to the drinking water supply in Bangladesh: Challenges to achieving the sustainable development goals. World Bank.

    Google Scholar 

  • Silatsa, F. B., Yemefack, M., Tabi, F. O., Heuvelink, G. B., & Leenaars, J. G. (2020). Assessing countrywide soil organic carbon stock using hybrid machine learning modelling and legacy soil data in Cameroon. Geoderma, 367, 114260.

    Article  CAS  Google Scholar 

  • Taghizadeh-Mehrjardi, R., Mahdianpari, M., Mohammadimanesh, F., Behrens, T., Toomanian, N., Scholten, T., et al. (2020). Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran. Geoderma, 376, 114552.

    Article  Google Scholar 

  • Teuling, A. J., Stӧckli, R., & Seneviratne, S. I. (2011). Bivariate colour maps for visualizing climate data. International Journal of Climatology, 31, 1408–1412.

    Article  Google Scholar 

  • Trumbo, B. E. (1981). A theory for coloring bivariate statistical maps. The American Statistician, 35(4), 220–226.

    Google Scholar 

  • Udeigwe, T. K., Eichmann, M., Eze, P. N., Ogendi, G. M., Morris, M. N., & Riley, M. R. (2016). Copper micronutrient fixation kinetics and interactions with soil constituents in semi-arid alkaline soils. Soil Science and Plant Nutrition, 62(3), 289–296.

    Article  CAS  Google Scholar 

  • Urbanek, S. (2015). Package ‘png’. Retrieved August, 2022, from https://cran.r-project.org/web/packages/png/png.pdf

  • USDA–NRCS. (2004). Soil survey laboratory methods manual. Soil survey investigations report no. 42. Version 4.0. Retrieved August, 2022, from https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1026807.pdf

  • Vysloužilová, B., Danková, L., Ertlen, D., Novák, J., Schwartz, D., Šefrna, L., et al. (2014). Vegetation history of chernozems in the Czech Republic. Vegetation History and Archaeobotany, 23(1), 97–108.

    Article  Google Scholar 

  • Wadoux, A. M. C., Heuvelink, G. B., De Bruin, S., & Brus, D. J. (2021a). Spatial cross-validation is not the right way to evaluate map accuracy. Ecological Modelling, 457, 109692.

    Article  Google Scholar 

  • Wadoux, A. M. C., Heuvelink, G. B., Lark, R. M., Lagacherie, P., Bouma, J., Mulder, V. L., et al. (2021b). Ten challenges for the future of pedometrics. Geoderma, 401, 115155.

    Article  Google Scholar 

  • Wadoux, A. M. C., & Molnar, C. (2021). Beyond prediction: Methods for interpreting complex models of soil variation. Geoderma, 422, 115953.

    Article  Google Scholar 

  • Wadoux, A. M. C., Samuel-Rosa, A., Poggio, L., & Mulder, V. L. (2020). A note on knowledge discovery and machine learning in digital soil mapping. European Journal of Soil Science, 71(2), 133–136.

    Article  Google Scholar 

  • Wainer, H., & Francolini, C. M. (1980). An empirical inquiry concerning human understanding of two-variable color maps. The American Statistician, 34(2), 81–93.

    Google Scholar 

  • Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. Wiley.

    Book  Google Scholar 

  • Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., & Wilke, C. (2022). Package ‘ggplot2’. Retrieved August, 2022, from https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf

  • Wickham, H., & RStudio. (2022). Package ‘tidyverse’. Retrieved August, 2022, from https://cran.r-project.org/web/packages/tidyverse/tidyverse.pdf

  • Zhou, T., Geng, Y., Ji, C., Xu, X., Wang, H., Pan, J., et al. (2021). Prediction of soil organic carbon and the C: N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Science of the Total Environment, 755, 142661.

    Article  CAS  PubMed  Google Scholar 

  • Žížala, D., Juřicová, A., Kapička, J., & Novotný, I. (2021). The potential risk of combined effects of water and tillage erosion on the agricultural landscape in Czechia. Journal of Maps, 17(2), 428–438.

    Article  Google Scholar 

  • Žížala, D., Minařík, R., Skála, J., Beitlerová, H., Juřicová, A., Rojas, J. R., et al. (2022). High-resolution agriculture soil property maps from digital soil mapping methods, Czech Republic. Catena, 212, 106024.

    Article  Google Scholar 

Download references

Acknowledgements

The European Soil Data Centre (ESDAC), https://esdac.jrc.ec.europa.eu/, European Commission, Joint Research Centre is greatly appreciated for the soil data used in this study.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ndiye M. Kebonye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kebonye, N.M., Agyeman, P.C., Seletlo, Z. et al. On exploring bivariate and trivariate maps as visualization tools for spatial associations in digital soil mapping: A focus on soil properties. Precision Agric 24, 511–532 (2023). https://doi.org/10.1007/s11119-022-09955-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-022-09955-7

Keywords

Navigation