Skip to main content

Advertisement

Log in

Bacteriophage Therapy in Implant-Related Orthopedic Infections

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Biofilm producers pose a major challenge in treating implant-related orthopedic infections (IROIs). The incidence of IROIs for the closed fracture amounts to 1% to 2% whereas for open fracture it is up to 30%. Due to inappropriate and irrational use of antibiotics in the management of infections, there is an emergence of a global “antimicrobial resistance crisis”. To combat these antimicrobial resistance crises, a few innovative and targeted therapies like nanomedicine, phage therapy, antimicrobial peptides, and sonic therapies have been introduced. In this review, we have detailed the basic mechanisms involved in the employment of bacteriophage therapy for IROIs, along with the preclinical and clinical data on its utility. We also present the guidelines on its regulation, processing, and limitations of bacteriophage therpay to combat the upcoming era of antibiotic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Steinmetz, S., Wernly, D., Moerenhout, K., Trampuz, A., & Borens, O. (2019). Infection after fracture fixation. EFORT Open Reviews, 4(7), 468–475. https://doi.org/10.1302/2058-5241.4.180093

    Article  PubMed  PubMed Central  Google Scholar 

  2. Limoli, D. H., Jones, C. J., & Wozniak, D. J. (2015). Bacterial extracellular polysaccharides in biofilm formation and function. Microbiology Spectrum, 3(3), 3. https://doi.org/10.1128/microbiolspec.MB-0011-2014

  3. Singh, S., Singh, S. K., Chowdhury, I., & Singh, R. (2017). Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. The Open Microbiology Journal, 11, 53–62. https://doi.org/10.2174/1874285801711010053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrobial Resistance & Infection Control., 8(1), 76. https://doi.org/10.1186/s13756-019-0533-3

    Article  Google Scholar 

  5. Lebeaux, D., Ghigo, J. M., & Beloin, C. (2014). Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiology and Molecular Biology Reviews, 78(3), 510–543. https://doi.org/10.1128/MMBR.00013-14

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ventola, C. L. (2015). The antibiotic resistance crisis. Pharmacy and Therapeutics, 40(4), 277–283.

    PubMed  PubMed Central  Google Scholar 

  7. Aslam, B., Wang, W., Arshad, M. I., et al. (2018). Antibiotic resistance: A rundown of a global crisis. Infection and Drug Resistance, 11, 1645–1658. https://doi.org/10.2147/IDR.S173867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dominey-Howes, D., Bajorek, B., Michael, C., Betteridge, B., Iredell, J., & Labbate, M. (2015). Applying the emergency risk management process to tackle the crisis of antibiotic resistance. Frontiers in Microbiology., 6, 927. https://doi.org/10.3389/fmicb.2015.00927

    Article  PubMed  PubMed Central  Google Scholar 

  9. Laxminarayan, R., Duse, A., Wattal, C., et al. (2013). Antibiotic resistance-the need for global solutions. The Lancet Infectious Diseases, 13(12), 1057–1098. https://doi.org/10.1016/S1473-3099(13)70318-9

    Article  PubMed  Google Scholar 

  10. Gibb, B. P., & Hadjiargyrou, M. (2021). Bacteriophage therapy for bone and joint infections. The Bone & Joint Journal, 103-B(2), 234–244. https://doi.org/10.1302/0301-620X.103B2.BJJ-2020-0452.R2.

  11. Tande, A. J., & Patel, R. (2014). Prosthetic joint infection. Clinical Microbiology Reviews, 27(2), 302–345. https://doi.org/10.1128/CMR.00111-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, B., & Webster, T. J. (2018). Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. Journal of Orthopaedic Research, 36(1), 22–32. https://doi.org/10.1002/jor.23656

    Article  PubMed  Google Scholar 

  13. Ribeiro, M., Monteiro, F. J., & Ferraz, M. P. (2012). Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter, 2(4), 176–194. https://doi.org/10.4161/biom.22905

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, 25–64. https://doi.org/10.4137/PMC.S14459

    Article  PubMed  PubMed Central  Google Scholar 

  15. Otto, M. (2009). Staphylococcus epidermidis—The “accidental” pathogen. Nature Reviews Microbiology, 7(8), 555–567. https://doi.org/10.1038/nrmicro2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S., & Pardesi, K. R. (2019). Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Frontiers in Microbiology, 10, 539. https://doi.org/10.3389/fmicb.2019.00539

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gandra, S., Tseng, K. K., Arora, A., et al. (2019). The mortality burden of multidrug-resistant pathogens in India: A retrospective, observational study. Clinical Infectious Diseases, 69(4), 563–570. https://doi.org/10.1093/cid/ciy955

    Article  PubMed  Google Scholar 

  18. Karaiskos, I., Lagou, S., Pontikis, K., Rapti, V., & Poulakou, G. (2019). The, “Old” and the “New” antibiotics for MDR gram-negative pathogens: For whom, when, and how. Frontiers in Public Health, 7, 151. https://doi.org/10.3389/fpubh.2019.00151

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wittebole, X., De Roock, S., & Opal, S. M. (2014). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 5(1), 226–235. https://doi.org/10.4161/viru.25991

    Article  PubMed  Google Scholar 

  20. Clokie, M. R., Millard, A. D., Letarov, A. V., & Heaphy, S. (2011). Phages in nature. Bacteriophage., 1(1), 31–45. https://doi.org/10.4161/bact.1.1.14942

    Article  PubMed  PubMed Central  Google Scholar 

  21. Doss, J., Culbertson, K., Hahn, D., Camacho, J., & Barekzi, N. (2017). A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses, 9(3), 50. https://doi.org/10.3390/v9030050

    Article  CAS  PubMed Central  Google Scholar 

  22. Lin, D. M., Koskella, B., & Lin, H. C. (2017). Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeutics, 8(3), 162–173. https://doi.org/10.4292/wjgpt.v8.i3.162

    Article  PubMed  PubMed Central  Google Scholar 

  23. Principi, N., Silvestri, E., & Esposito, S. (2019). Advantages and limitations of bacteriophages for the treatment of bacterial infections. Frontiers in Pharmacology, 10, 513. https://doi.org/10.3389/fphar.2019.00513

    Article  PubMed  PubMed Central  Google Scholar 

  24. Loc-Carrillo, C., & Abedon, S. T. (2011). Pros and cons of phage therapy. Bacteriophage, 1(2), 111–114. https://doi.org/10.4161/bact.1.2.14590

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brady, T. S., Fajardo, C. P., Merrill, B. D., et al. (2018). Bystander phage therapy: Inducing host-associated bacteria to produce antimicrobial toxins against the pathogen using phages. Antibiotics, 7(4), 105. https://doi.org/10.3390/antibiotics7040105

    Article  CAS  PubMed Central  Google Scholar 

  26. Rosner, D., & Clark, J. (2021). Formulations for bacteriophage therapy and the potential uses of immobilization. Pharmaceuticals (Basel), 14(4), 359. https://doi.org/10.3390/ph14040359

    Article  CAS  Google Scholar 

  27. Rotman, S. G., Sumrall, E., Ziadlou, R., et al. (2020). Local bacteriophage delivery for treatment and prevention of bacterial infections. Frontiers in Microbiology, 11, 538060. https://doi.org/10.3389/fmicb.2020.538060

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sulakvelidze, A., Alavidze, Z., & Morris, J. G. (2001). Bacteriophage therapy. Antimicrobial Agents and Chemotherapy, 45(3), 649–659. https://doi.org/10.1128/AAC.45.3.649-659.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chan, B. K., Abedon, S. T., & Loc-Carrillo, C. (2013). Phage cocktails and the future of phage therapy. Future Microbiology, 8(6), 769–783. https://doi.org/10.2217/fmb.13.47

    Article  CAS  PubMed  Google Scholar 

  30. Hyman, P. (2019). Phages for phage therapy: Isolation, characterization, and host range breadth. Pharmaceuticals (Basel), 12(1), 35. https://doi.org/10.3390/ph12010035

    Article  CAS  Google Scholar 

  31. Abedon, S. T. (2018). Phage therapy: Various perspectives on how to improve the art. Methods in Molecular Biology, 1734, 113–127. https://doi.org/10.1007/978-1-4939-7604-1_11

    Article  CAS  PubMed  Google Scholar 

  32. Gu Liu, C., Green, S. I., Min, L., et al. Phage-antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry. mBio, 11(4), e01462-20. https://doi.org/10.1128/mBio.01462-20

  33. Zimecki, M., Artym, J., Kocięba, M., Weber-Dąbrowska, B., Borysowski, J., & Górski, A. (2009). Effects of prophylactic administration of bacteriophages to immunosuppressed mice infected with Staphylococcus aureus. BMC Microbiology, 9(1), 169. https://doi.org/10.1186/1471-2180-9-169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zimecki, M., Artym, J., Kocieba, M., Weber-Dabrowska, B., Borysowski, J., & Górski, A. (2010). Prophylactic effect of bacteriophages on mice subjected to chemotherapy-induced immunosuppression and bone marrow transplant upon infection with Staphylococcus aureus. Medical Microbiology and Immunology, 199(2), 71–79. https://doi.org/10.1007/s00430-009-0135-4

    Article  PubMed  Google Scholar 

  35. Morris, J., Kelly, N., Elliott, L., et al. (2019). Evaluation of bacteriophage anti-biofilm activity for potential control of orthopedic implant-related infections caused by Staphylococcus aureus. Surgical Infections (Larchmt), 20(1), 16–24. https://doi.org/10.1089/sur.2018.135

    Article  Google Scholar 

  36. Wroe, J. A., Johnson, C. T., & García, A. J. (2020). Bacteriophage delivering hydrogels reduce biofilm formation in vitro and infection in vivo. Journal of Biomedical Materials Research Part A, 108(1), 39–49. https://doi.org/10.1002/jbm.a.36790

    Article  CAS  PubMed  Google Scholar 

  37. Yilmaz, C., Colak, M., Yilmaz, B. C., Ersoz, G., Kutateladze, M., & Gozlugol, M. (2013). Bacteriophage therapy in implant-related infections: An experimental study. Journal of Bone and Joint Surgery American Volume, 95(2), 117–125. https://doi.org/10.2106/JBJS.K.01135

    Article  PubMed  Google Scholar 

  38. Kaur, S., Harjai, K., & Chhibber, S. (2016). In vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections. PLoS One, 11(6), e0157626. https://doi.org/10.1371/journal.pone.0157626

  39. Kishor, C., Mishra, R. R., Saraf, S. K., Kumar, M., Srivastav, A. K., & Nath, G. (2016). Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. Indian Journal of Medical Research, 143(1), 87–94. https://doi.org/10.4103/0971-5916.178615

    Article  PubMed  PubMed Central  Google Scholar 

  40. Meurice, E., Rguiti, E., Brutel, A., et al. (2012). New antibacterial microporous CaP materials loaded with phages for prophylactic treatment in bone surgery. Journal of Materials Science: Materials in Medicine, 23(10), 2445–2452. https://doi.org/10.1007/s10856-012-4711-6

    Article  CAS  PubMed  Google Scholar 

  41. Kaur, S., Harjai, K., & Chhibber, S. (2014). Bacteriophage mediated killing of Staphylococcus aureus in vitro on orthopaedic K wires in presence of linezolid prevents implant colonization. PLoS ONE, 9(3), e90411. https://doi.org/10.1371/journal.pone.0090411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kolenda, C., Josse, J., Medina, M., et al. (2020). Evaluation of the activity of a combination of three bacteriophages alone or in association with antibiotics on Staphylococcus aureus embedded in biofilm or internalized in osteoblasts. Antimicrobial Agents and Chemotherapy, 64(3), e02231-e2319. https://doi.org/10.1128/AAC.02231-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barros, J., Melo, L. D. R., Poeta, P., et al. (2019). Lytic bacteriophages against multidrug-resistant Staphylococcus aureus, Enterococcus faecalis and Escherichia coli isolates from orthopaedic implant-associated infections. International Journal of Antimicrobial Agents., 54(3), 329–337. https://doi.org/10.1016/j.ijantimicag.2019.06.007

    Article  CAS  PubMed  Google Scholar 

  44. Fish, R., Kutter, E., Wheat, G., Blasdel, B., Kutateladze, M., & Kuhl, S. (2016). Bacteriophage treatment of intransigent diabetic toe ulcers: A case series. Journal of Wound Care, 25(Sup7), S27–S33. https://doi.org/10.12968/jowc.2016.25.Sup7.S27

    Article  Google Scholar 

  45. Ferry, T., Boucher, F., Fevre, C., et al. (2018). Innovations for the treatment of a complex bone and joint infection due to XDR Pseudomonas aeruginosa including local application of a selected cocktail of bacteriophages. Journal of Antimicrobial Chemotherapy, 73(10), 2901–2903. https://doi.org/10.1093/jac/dky263

    Article  CAS  PubMed  Google Scholar 

  46. Onsea, J., Soentjens, P., Djebara, S., et al. (2019). Bacteriophage application for difficult-to-treat musculoskeletal infections: Development of a standardized multidisciplinary treatment protocol. Viruses, 11(10), 891. https://doi.org/10.3390/v11100891

    Article  CAS  PubMed Central  Google Scholar 

  47. Ferry, T., Leboucher, G., Fevre, C., et al. (2018). Salvage debridement, antibiotics and implant retention (“DAIR”) with local injection of a selected cocktail of bacteriophages: Is it an option for an elderly patient with relapsing Staphylococcus aureus prosthetic-joint infection? Open Forum Infectious Diseases, 5(11), ofy269. https://doi.org/10.1093/ofid/ofy269

  48. Tkhilaishvili, T., Winkler, T., Müller, M., Perka, C., & Trampuz, A. (2019). Bacteriophages as adjuvant to antibiotics for the treatment of periprosthetic joint infection caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 64(1), e00924-e1019. https://doi.org/10.1128/AAC.00924-19

    Article  PubMed  PubMed Central  Google Scholar 

  49. LaVergne, S., Hamilton, T., Biswas, B., Kumaraswamy, M., Schooley, R. T., & Wooten, D. (2018). Phage therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection. Open Forum Infectious Diseases, 5(4), ofy064. https://doi.org/10.1093/ofid/ofy064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Patey, O., McCallin, S., Mazure, H., Liddle, M., Smithyman, A., & Dublanchet, A. (2018). Clinical indications and compassionate use of phage therapy: Personal experience and literature review with a focus on osteoarticular infections. Viruses, 11(1), 18. https://doi.org/10.3390/v11010018

    Article  PubMed Central  Google Scholar 

  51. Nir-Paz, R., Gelman, D., Khouri, A., et al. (2019). Successful treatment of antibiotic-resistant, poly-microbial bone infection with bacteriophages and antibiotics combination. Clinical Infectious Diseases, 69(11), 2015–2018. https://doi.org/10.1093/cid/ciz222

    Article  PubMed  Google Scholar 

  52. Fish, R., Kutter, E., Bryan, D., Wheat, G., & Kuhl, S. (2018). Resolving digital Staphylococcal osteomyelitis using bacteriophage—A case report. Antibiotics (Basel)., 7(4), 87. https://doi.org/10.3390/antibiotics7040087

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathish Muthu.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest to disclose.

Ethical standard

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyaraman, M., Jeyaraman, N., Konkathi, V.K. et al. Bacteriophage Therapy in Implant-Related Orthopedic Infections. JOIO 56, 1685–1693 (2022). https://doi.org/10.1007/s43465-022-00728-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-022-00728-y

Keywords

Navigation