Skip to main content
Log in

Combined effects of hydrostatic pressure and electric field on the donor binding energy, polarizability, and photoionization cross-section in double GaAs/Ga\(_{1-x}\)Al\(_{x}\)As quantum dots

  • Regular Article – Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The present work focuses on the theoretical calculations of the ground-state binding energy of a shallow impurity, the impurity-related photoionization cross-section (PICS), and impurity-related polarizability under the combined effects of an electric field and hydrostatic pressure using a variational approach within the parabolic-band and effective-mass approximations. The low heterostructure is made up of two GaAs quantum dots separated by a Al\(_{0.3}\)Ga\(_{0.7}\)As central barrier. The applied electric field is considered to be directed along the growth-direction. As a general, the binding energy is obtained as a function of the impurity position and the electric field intensity. The PICS is calculated as a function of photon energy, for various impurity positions, with changes in hydrostatic pressure and/or electric field strength to prove their impact on their magnitude and shifting. Calculations are without accounting for the \(\Gamma -X\) effect of the GaAs/Al\(_{0.3}\)Ga\(_{0.7}\)As and for a specific nanostructure size. In addition, we have shown how variations in hydrostatic pressure and electric field affect the polarizability of impurities at three distinct places in the nanostructure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Author’s comment: All the files with tables, figures, and codes are available. The corresponding author will provide all the files in case they are requested.]

References

  1. S. Nizamoglu, H.V. Demir, Hybrid white light sources based on layer-by-layer assembly of nanocrystals on near-UV emitting diodes, Nanotechnology 18, 405702 (pp4) (2007). https://doi.org/10.1088/0957-4484/18/40/405702

  2. T. Suzuki, T. Mitsuyu, K. Nishi, H. Ohyama, T. Tomimasu, S. Noda, T. Asano, A. Sasaki, Observation of ultrafast all-optical modulation based on intersubband transition in \(n\)-doped quantum wells by using free electron laser. Appl. Phys. Lett. 69, 4136 (1996). https://doi.org/10.1063/1.117838

    Article  ADS  Google Scholar 

  3. R.C. Miller, D.A. Kleinman, A.C. Gossard, Energy-gap discontinuities and effective masses for GaAs-Al\(_{x}\)Ga\(_{1-x}\)As quantum wells. Phys. Rev. B 29, 7085–7087 (1984). https://doi.org/10.1103/PhysRevB.29.7085

    Article  ADS  Google Scholar 

  4. S. Noda, T. Uemura, T. Yamashita, A. Sasaki, All-optical modulation using an \(n\)-doped quantum-well structure. J. Appl. Phys. 68, 6529–6531 (1990). https://doi.org/10.1063/1.346830

    Article  ADS  Google Scholar 

  5. J. López-Gondar, J. d’Albuquerque e Castro, L.E. Oliveira, Electric-field effects on shallow impurity states in GaAs-(Ga,Al)As quantum wells, Phys. Rev. B 42, 7069-7077 (1990). https://doi.org/10.1103/PhysRevB.42.7069

  6. G. Bastard, Hydrogenic impurity states in a quantum well: A simple model. Phys. Rev. B 24, 4714–4722 (1981). https://doi.org/10.1103/PhysRevB.24.4714

    Article  ADS  Google Scholar 

  7. J.W. Brown, H.N. Spector, Hydrogen impurities in quantum well wires. J. Appl. Phys. 59, 1179 (1986). https://doi.org/10.1063/1.336555

    Article  ADS  Google Scholar 

  8. R. Khordad, H. Bahramiyan, Study of impurity position effect in pyramid and cone like quantum dots. Eur. Phys. J. Appl. Phys. 67, 20402 (2014). https://doi.org/10.1051/epjap/2014140080

    Article  ADS  Google Scholar 

  9. T.G. Emam, Effect of temperature on the binding energy of a shallow hydrogenic impurity in a quantum well wire. Can. J. Phys. 87, 1159–1161 (2009). https://doi.org/10.1139/P09-083

    Article  ADS  Google Scholar 

  10. A.M. Elabsy, Effect of temperature on the binding energy of a confined impurity to a spherical semiconductor quantum dot. Phys. Scri. 59, 328–330 (1999). https://doi.org/10.1238/physica.regular.059a00328

    Article  ADS  Google Scholar 

  11. E.B. Al, E. Kasapoglu, S. Sakiroglu, H. Sari, I. Sökmen, C.A. Duque, Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field. Physica E 119, 114011 (2020). https://doi.org/10.1016/j.physe.2020.114011

    Article  Google Scholar 

  12. A. Bilekkaya, Ş Aktaş, S.E. Okan, F.K. Boz, Electric and magnetic field effects on the binding energy of a hydrogenic impurity in quantum well wires with different shapes. Superlattice Microst. 44, 96–105 (2008). https://doi.org/10.1016/j.spmi.2008.02.010

    Article  ADS  Google Scholar 

  13. C. Dane, H. Akbas, S. Minez, A. Guleroglu, Electric field effect in a GaAs/AlAs spherical quantum dot. Physica E 41, 278–281 (2008). https://doi.org/10.1016/j.physe.2008.07.016

    Article  ADS  Google Scholar 

  14. H.C. Liu, Quantum dot infrared photodetector. Opto-Electron. Rev 11, 1–5 (2003)

    ADS  Google Scholar 

  15. S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes, Nanotechnology 18, 065709 (5pp) (2007). https://doi.org/10.1088/0957-4484/18/6/065709

  16. J. Gorman, D.G. Hasko, D.A. Williams, Charge-qubit operation of an isolated double quantum dot, Phys. Rev, Lett. 95, 090502 (2005). https://doi.org/10.1103/PhysRevLett.95.090502

  17. J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180 (2005). https://doi.org/10.1126/science.1116955

    Article  ADS  Google Scholar 

  18. J.R. Petta, A.C. Johnson, C.M. Marcus, M.P. Hanson, A.C. Gossard, Manipulation of a single charge in a double quantum dot. Phys. Rev. Lett. 93, 1–4 (2004). https://doi.org/10.1103/PhysRevLett.93.186802

    Article  Google Scholar 

  19. S. Selsto, M. Forre, Coherent single-electron transport between coupled quantum dots. Phys. Rev. B 74, 1–6 (2006). https://doi.org/10.1103/PhysRevB.74.195327

    Article  Google Scholar 

  20. M. Forre, J.P. Hansen, V. Popsueva, A. Dubois, Fast single-electron transport in a double quantum dot. Phys. Rev. B 74, 165304 (2006). https://doi.org/10.1103/PhysRevB.74.165304

    Article  ADS  Google Scholar 

  21. A. Fountoulakis, Andreas F. Terzis, E. Paspalakis, Coherent single-electron transfer in coupled quantum dots, J. Appl. Phys. 106, 074305 (2009). https://doi.org/10.1063/1.3232226

  22. C.A. Duque, A. Montes, A.L. Morales, Binding energy and polarizability in GaAs-(Ga, Al)As quantum-well wires. Physica B 302–303, 84–87 (2001). https://doi.org/10.1016/S0921-4526(01)00410-0

    Article  ADS  Google Scholar 

  23. Z.G. Bai, J.J. Liu, Stress effects on the binding energy of shallow-donor impurities in symmetrical GaAs/AlGaAs double quantum-well wires, J. Phys.: Condens. Matter 19, 346218 (pp13) (2007). https://doi.org/10.1088/0953-8984/19/34/346218

  24. A.L. Morales, N. Raigoza, E. Reyes-Gómez, J.M. Osorio-Guillén, C.A. Duque, Impurity-related polarizability and photoionization-cross section in GaAs-Ga\(_{1-x}\)Al\(_x\) As double quantum wells under electric fields and hydrostatic pressure. Superlattice Microst. 45, 590–597 (2009). https://doi.org/10.1016/j.spmi.2009.03.001

    Article  ADS  Google Scholar 

  25. M. Takikawa, K. Kelting, G. Brunthaler, M. Takechi, J. Komeno, Photoionization of deep traps in AlGaAs/GaAs quantum wells. J. Appl. Phys. 65, 3937 (1989). https://doi.org/10.1063/1.343359

    Article  ADS  Google Scholar 

  26. A. Sali, M. Fliyou, H. Satori, H. Loumrhari, Photoionization of impurities in quantum-well wires, Phys. Stat. Sol. (B) 211, 661 (1999). https://doi.org/10.1002/(SICI)1521-3951(199902)211:2¡661::AID-PSSB661¿3.0.CO;2-Q

  27. A. Sali, H. Satori, M. Fliyou, H. Loumrhari, The photoionization cross-section of impurities in quantum dots. Phys. Stat. Sol. (B) 232, 209–219 (2002). https://doi.org/10.1002/1521-3951(200208)232:2¡209::AID-PSSB209¿3.0.CO;2-O

  28. E. Iqraoun, A. Sali, K. El-Bakkari, M.E. Mora-Ramos, C.A. Duque, Binding energy, polarizability, and diamagnetic response of shallow donor impurity in zinc blende GaN quantum dots, Micro and Nanostructures 163, 107142 (pp12) (2022). https://doi.org/10.1016/j.spmi.2021.107142

  29. A. Fakkahi, A. Sali, M. Jaouane, R. Arraoui, A. Ed-Dahmouny, Study of photoionization cross section and binding energy of shallow donor impurity in multilayered spherical quantum dot, Physica E 143, 115351 (pp7) (2022). https://doi.org/10.1016/j.physe.2022.115351

  30. M. Jaouane, A. Sali, A. Fakkahi, R. Arraoui, F. Ungan, The effects of temperature and pressure on the optical properties of a donor impurity in (In,Ga)N/GaN multilayer cylindrical quantum dots, Micro and Nanostructures 163, 107146 (pp12) (2022). https://doi.org/10.1016/10.1016/j.spmi.2021.107146

  31. Aindrila Bera, Anuja Ghosh, Surajit Saha, Sk. Md. Arif, Manas Ghosh, Modulation of static dipole polarizability of impurity doped quantum dots in presence of noise, J. Alloys Compd. 742, 142-150 (2018). https://doi.org/10.1016/j.jallcom.2018.01.274

  32. Aindrila Bera, Manas Ghosh, Dipole moment and polarizability of impurity doped quantum dots driven by noise: Influence of hydrostatic pressure and temperature. Physica B 515, 18–22 (2017). https://doi.org/10.1016/j.physb.2017.03.047

    Article  ADS  Google Scholar 

  33. A.L. Morales, A. Montes, S.Y. López, N. Raigoza, C.A. Duque, Donor-related density of states and polarizability in a GaAs-(Ga, Al)As quantum-well under hydrostatic pressure and applied electric field. Phys. Stat. Sol. Conferences 656, 652–656 (2003). https://doi.org/10.1002/pssc.200306176

    Article  Google Scholar 

  34. A. Zounoubi, K. El Messaoudi, I. Zorkani, A. Jorio, Magnetic field and finite barrier-height effects on the polarizability of a shallow donor in a GaAs quantum wire. Superlattice Microst. 30, 189–200 (2001). https://doi.org/10.1006/spmi.2001.1006

    Article  ADS  Google Scholar 

  35. I. Karabulut, M.E. Mora-Ramos, C.A. Duque, Nonlinear optical rectification and optical absorption in GaAs-Ga\(_{1-x}\)Al\(_x\)As asymmetric double quantum wells: Combined effects of applied electric and magnetic fields and hydrostatic pressure. J. Lumin. 131, 1502–1509 (2011). https://doi.org/10.1016/j.jlumin.2011.03.044

    Article  Google Scholar 

  36. E. Kasapoglu, The hydrostatic pressure and temperature effects on donor impurities in GaAs/Ga\(_{1-x}\)Al\(_x\)As double quantum well under the external fields. Phys. Lett. A 373, 140–143 (2008). https://doi.org/10.1063/1.881393

    Article  ADS  Google Scholar 

  37. W. Belaid, H. El Ghazi, I. Zorkani, A. Jorio, Pressure-related binding energy in (In, Ga)N/GaN double quantum wells under internal composition effects. Sol. Sta. Comm. 327, 114193 (2021). https://doi.org/10.1016/j.ssc.2021.114193

    Article  Google Scholar 

  38. A.L. Morales, N. Raigoza, C.A. Duque, Donor-related optical absorption spectra for a GaAs-Ga\(_{0.7}\)Al\(_{0.3}\)As double quantum well under hydrostatic pressure and applied electric field effects. Electronic and Magnetic Properties of Nanoscopic Systems. Braz. J. Phys. 36(3b), (2006). https://doi.org/10.1590/S0103-97332006000600017

  39. N. Raigoza, A.L. Morales, A. Montes, N. Porras-Montenegro, C.A. Duque, Stress effects on shallow-donor impurity states in symmetrical GaAs/Al\(_x\)Ga\(_{1-x}\)As double quantum wells. Phys. Rev. B 69(045323), 1–8 (2004). https://doi.org/10.1103/PhysRevB.69.045323

    Article  Google Scholar 

  40. N. Raigoza, A.L. Morales, C.A. Duque, Effects of hydrostatic pressure on donor states in symmetrical GaAs-Ga\(_{0.7}\)Al\(_{0.3}\)As double quantum wells, Physica B 363, 262-270 (2005). https://doi.org/10.1016/j.physb.2005.03.031

  41. E. Tangarife, C.A. Duque, Shallow-donor impurity in coupled GaAs/Ga\(_{1-x}\)Al\(_x\)As quantum well wires: Hydrostatic pressure and applied electric field effects. Phys. Stat. Sol. (B) 247, 1778–1785 (2010). https://doi.org/10.1002/pssb.200945519

    Article  ADS  Google Scholar 

  42. C.M. Duque, M.G. Barseghyan, C.A. Duque, Donor impurity in vertically-coupled quantum-dots under hydrostatic pressure and applied electric field. Europ. Phys. J. B 73, 309–319 (2010). https://doi.org/10.1140/epjb/e2009-00433-7

    Article  ADS  Google Scholar 

  43. J.J. Liu, M. Shen, S.W. Wang, The influence of compressive stress on shallow-donor impurity states in symmetric GaAs-Ga\(_{1-x}\)Al\(_x\)As double quantum dots. J. Appl. Phys. 101, 073703 (2007). https://doi.org/10.1063/1.2717584

    Article  ADS  Google Scholar 

  44. R. Arraoui, A. Sali, A. Ed-Dahmouny, M. Jaouane, A. Fakkahi, Polaronic mass and non-parabolicity effects on the photoionization cross section of an impurity in a double quantum dot, Superlattice Microst. 159, 107049 (2021). https://doi.org/10.1016/J.SPMI.2021.107049

  45. C.M. Duque, M.G. Barseghyan, C.A. Duque, Hydrogenic impurity binding energy in vertically coupled Ga\(_{1-x}\)Al\(_x\)As quantum-dots under hydrostatic pressure and applied electric field. Physica B 404, 5177–5180 (2009). https://doi.org/10.1016/j.physb.2009.08.292

    Article  ADS  Google Scholar 

  46. M. Kirak, Y. Altinok, S. Yilmaz, The effects of the hydrostatic pressure and temperature on binding energy and optical properties of a donor impurity in a spherical quantum dot under external electric field. J. Lumin. 136, 415–421 (2013). https://doi.org/10.1016/j.jlumin.2012.12.026

    Article  Google Scholar 

  47. S. Saha, J. Ganguly, A. Bera, M. Ghosh, Simultaneous influence of hydrostatic pressure and temperature on diamagnetic susceptibility of impurity doped quantum dots under the aegis of noise. Chem. Phys. 480, 17–22 (2016). https://doi.org/10.1016/j.chemphys.2016.10.012

    Article  Google Scholar 

  48. G. Rezaei, S.F. Taghizadeh, A.A. Enshaeian, External electric field, hydrostatic pressure and temperature effects on the binding energy of an off-center hydrogenic impurity confined in a spherical Gaussian quantum dot. Physica E 44, 1562–1566 (2012). https://doi.org/10.1016/j.physe.2012.03.028

    Article  ADS  Google Scholar 

  49. H.O. Oyoko, C.A. Duque, N. Porras-Montenegro, Uniaxial stress dependence of the binding energy of shallow donor impurities in GaAs-(Ga, Al)As quantum dots. J. Apply. Phys. 90, 819–823 (2001). https://doi.org/10.1063/1.1372976

    Article  ADS  Google Scholar 

  50. O. Akankan, A study of the effect of spatial electric field on the binding energy and polarization of a donor impurity in a GaAs/AlAs tetragonal quantum dot (TQD). Superlattice Microst. 55, 45–52 (2013). https://doi.org/10.1016/j.spmi.2012.11.014

  51. G. Lamouche, Y. Lépine, Photoionization of semiconductor impurities in the presence of a static electric field. Phys. Rev. B 49, 13452 (1994). https://doi.org/10.1103/physrevb.49.13452

  52. S. Li, L. Shi, Z.W. Yan, Binding energies and photoionization cross-sections of donor impurities in GaN/Al\(_x\)Ga\(_{1-x}\)N spherical quantum dot under hydrostatic pressure. Mod. Phys. Let. B 34, 1–13 (2020). https://doi.org/10.1142/S0217984920501535

  53. E. Tangarife, C.A. Duque, Simultaneous effects of hydrostatic pressure and electric field on impurity binding energy and polarizability in coupled InAs/GaAs quantum wires. Physica B 406, 952–956 (2011). https://doi.org/10.1016/j.physb.2010.12.035

Download references

Acknowledgements

CAD is grateful to the Colombian Agencies: CODI-Universidad de Antioquia (Estrategia de Sostenibilidad de la Universidad de Antioquia and projects “Propiedades magneto-ópticas y óptica no lineal en superredes de Grafeno”, “Estudio de propiedades ópticas en sistemas semiconductores de dimensiones nanoscópicas”, and “Propiedades de transporte, espintrónicas y térmicas en el sistema molecular ZincPorfirina”), and Facultad de Ciencias Exactas y Naturales-Universidad de Antioquia (CAD exclusive dedication project 2021-2022). CAD also acknowledges the financial support from El Patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas (project: CD 111580863338, CT FP80740-173-2019).

Author information

Authors and Affiliations

Authors

Contributions

The contributions of the authors are as follows: Ayoub Ed-Dahmouny and C. A. Duque: worked on the numerical calculations, in formal analysis, and writing of the manuscript. Ahmed Sali: proposed the problem and worked on the numerical calculations and writing of the manuscript. Najia Es-Sbai: worked on the numerical calculations, in formal analysis, and writing of the manuscript. Reda Arraoui: worked on the formal analysis and writing of the manuscript. Mohammed Jaouane, Abdelghani Fakkahi and Kamal El-Bakkari: worked on the numerical calculations and writing of the manuscript.

Corresponding author

Correspondence to Ayoub Ed-Dahmouny.

Ethics declarations

Conflict of interest

The authors do not have any financial and non-financial competing interests statement.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ed-Dahmouny, A., Sali, A., Es-Sbai, N. et al. Combined effects of hydrostatic pressure and electric field on the donor binding energy, polarizability, and photoionization cross-section in double GaAs/Ga\(_{1-x}\)Al\(_{x}\)As quantum dots. Eur. Phys. J. B 95, 136 (2022). https://doi.org/10.1140/epjb/s10051-022-00400-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00400-2

Navigation