Skip to main content
Log in

Secure proxy MIPv6-based mobility solution for LPWAN

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

With the advancement and the wide deployment of the Internet of Things, Low Power Wide Area Network (LPWAN) technologies will respond to applications requiring low power and long range features. In this context, mobility is an additional requirement needed by several applications including supply chain monitoring and health-care supervision. Proxy Mobile IPv6 (PMIPv6) as an extension of Internet Protocol (IP) is used in the LPWAN protocol stack since it provides mobility management. But PMIPv6 does not provide secure access for mobile nodes joining to the network. In this paper, we propose a new mobility solution for LPWAN based on PMIPv6 and we provide a new authentication mechanism to achieve secure access to the network. Thereafter, we evaluate the performance of the proposed solution by simulation using the Network Simulator 3 (NS-3) and by theoretical analysis. Moreover, the security of the proposed authentication mechanism is assessed using an informal security analysis as well as using the AVISPA validation tool. Finally, we compare the performance of our solution with other proposed solutions where we show the improvements made by our solution with respect to several parameters and requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Abbreviations used in the following sections are described in Table 2.

References

  1. Aloi, G., Caliciuri, G., Fortino, G., Gravina, R., Pace, P., Russo, W., & Savaglio, C. (2017). Enabling IOT interoperability through opportunistic smartphone-based mobile gateways. Journal of Network and Computer Applications, 81, 74–84.

    Article  Google Scholar 

  2. Saboor, A., Mustafa, A., Ahmad, R., Khan, M.A., Haris, M., & Hameed, R. (2019). Evolution of wireless standards for health monitoring. In 2019 9th annual information technology, electromechanical engineering and microelectronics conference (IEMECON), IEEE, pp. 268–272.

  3. Ramya, C.M., Shanmugaraj, M., & Prabakaran, R. (2011). Study on zigbee technology. In 2011 3rd international conference on electronics computer technology, IEEE, vol. 6, pp. 297–301.

  4. Heydon, R., & Hunn, N. (2012). Bluetooth low energy. CSR Presentation, Bluetooth SIGhttps://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx.

  5. Vejlgaard, B., Lauridsen, M., Nguyen, H., Kovács, I.Z., Mogensen, P., & Sorensen, M. (2017). Coverage and capacity analysis of sigfox, lora, gprs, and nb-iot. In 2017 IEEE 85th vehicular technology conference (VTC Spring), IEEE, pp. 1–5.

  6. Sornin, N., Yegin, A. (2017). Lorawan backend interfaces 1.0 specification. Lora Alliance Standard Specification, 11.

  7. Yugha, R., & Chithra, S. (2020). A survey on technologies and security protocols: Reference for future generation IOT. Journal of Network and Computer Applications, p. 102763.

  8. Li, S., Da Li, X., & Zhao, S. (2018). 5g internet of things: A survey. Journal of Industrial Information Integration, 10, 1–9.

    Article  Google Scholar 

  9. Santos, J., Wauters, T., Volckaert, B., & Turck, F. (2021). Towards end-to-end resource provisioning in fog computing over low power wide area networks. Journal of Network and Computer Applications, 175, 102915.

    Article  Google Scholar 

  10. Ayoub, W., Samhat, A. E., Nouvel, F., Mroue, M., & Prévotet, J.-C. (2018). Internet of mobile things: Overview of lorawan, dash7, and nb-iot in lpwans standards and supported mobility. IEEE Communications Surveys & Tutorials, 21(2), 1561–1581.

    Article  Google Scholar 

  11. Santos, J., Rodrigues, J. J. P. C., Silva, B. M. C., Casal, J., Saleem, K., & Denisov, V. (2016). An iot-based mobile gateway for intelligent personal assistants on mobile health environments. Journal of Network and Computer Applications, 71, 194–204.

    Article  Google Scholar 

  12. Minaburo, A., Toutain, L., Gomez, C., Barthel, D., & Zúñiga, J.-C. (2020). Schc: Generic framework for static context header compression and fragmentation. Technical report, RFC 8724.

  13. Shelby, Z., & Bormann, C. (2011). 6LoWPAN: The wireless embedded Internet, volume 43. John Wiley & Sons.

  14. Sandlund, K., Pelletier, G., & Jonsson, L.E. (2010). The robust header compression (rohc) framework. Technical report, RFC 5795.

  15. Minaburo, C.G.D.B.J.Z.A., & Toutain, L. (2018). Lpwan static context header compression (schc) and fragmentation for ipv6 and udp draft-ietf-lpwanipv6-static-context-hc-17.

  16. Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury, K., & Patil, B. et al. (2008) Proxy mobile ipv6. IETF.

  17. Sornin, Nicolas. (2015). Miguel Luis. Thomas Eirich: Thorsten Kramp, and Olivier Hersent. Lorawan specification. LoRa alliance.

  18. Doraswamy, N., & Harkins, D. (2003). IPSec: the new security standard for the Internet, intranets, and virtual private networks. Prentice Hall Professional.

    Google Scholar 

  19. Al-Surmi, I., Othman, M., & Ali, B. M. (2012). Mobility management for ip-based next generation mobile networks: Review, challenge and perspective. Journal of Network and computer Applications, 35(1), 295–315.

    Article  Google Scholar 

  20. Dutta, A., & Schulzrinne, H. (2014). Mobility protocols and handover optimization: Design, evaluation and application. John Wiley & Sons.

    Book  Google Scholar 

  21. Lamberg-Liszkay, J., & Lisauskas, T. (2018). An alternative roaming model in lorawan.

  22. Jradi, H., Samhat, A. E., Nouvel, F., Mroue, M., & Prévotet, J.-C. (2021). Overview of the mobility related security challenges in lpwans. Computer Networks, 186, 107761.

    Article  Google Scholar 

  23. Durand, A., Gremaud, P., & Pasquier, J. (2020). Decentralized lpwan infrastructure using blockchain and digital signatures. Concurrency and Computation: Practice and Experience, 32(12), e5352.

    Article  Google Scholar 

  24. Ayoub, W., Nouvel, F., Samhat, A. E., Mroue, M., & Prevotet, J.-C. (2020). Mobility management with session continuity during handover in lpwan. IEEE Internet of Things Journal, 7(8), 6686–6703.

    Article  Google Scholar 

  25. Ayoub, W., Samhat, A. E., Nouvel, F., Mroue, M., Jradi, H., & Prévotet, J.-C. (2020). Media independent solution for mobility management in heterogeneous lpwan technologies. Computer Networks, 182, 107423.

    Article  Google Scholar 

  26. De la Oliva, A., Soto, I., Banchs, A., Lessmann, J., Niephaus, C., & Melia, T. (2011). IEEE 802.21: Media independence beyond handover. Computer Standards & Interfaces, 33(6), 556–564.

    Article  Google Scholar 

  27. Koodli, R., & Perkins, C. (2009). Mobile ipv6 fast handovers. Technical report, RFC 5568.

  28. Soliman, H., Castelluccia, C., El Malki, K., & Bellier, L. (2005). Hierarchical mobile ipv6 mobility management (hmipv6).

  29. Ghaleb, S. M., Subramaniam, S., Zukarnain, Z. A., & Muhammed, A. (2016). Mobility management for IOT: A survey. EURASIP Journal on Wireless Communications and Networking, 2016(1), 1–25.

    Article  Google Scholar 

  30. Zhong, F., Yeo, C. K., & Lee, B. S. (2010). Enabling inter-pmipv6-domain handover with traffic distributors. Journal of Network and Computer Applications, 33(4), 397–409.

    Article  Google Scholar 

  31. Kent, S., & Atkinson, R. (1998). Rfc2401: Security architecture for the internet protocol.

  32. Sharma, Vishal, Guan, Jianfeng, Kim, Jiyoon, Kwon, Soonhyun, You, Ilsun, Palmieri, Francesco, & Collotta, Mario. (2019). Mih-spfp: Mih-based secure cross-layer handover protocol for fast proxy mobile ipv6-iot networks. Journal of Network and Computer Applications, 125, 67–81.

    Article  Google Scholar 

  33. Shin, D., Sharma, V., Kim, J., Kwon, S., & You, I. (2017). Secure and efficient protocol for route optimization in pmipv6-based smart home IOT networks. IEEE Access, 5, 11100–11117.

    Article  Google Scholar 

  34. Chuang, M.-C., & Lee, J.-F. (2013). Sf-pmipv6: A secure fast handover mechanism for proxy mobile ipv6 networks. Journal of Systems and Software, 86(2), 437–448.

    Article  Google Scholar 

  35. Mekki, K., Bajic, E., Chaxel, F., & Meyer, F. (2019). A comparative study of lpwan technologies for large-scale IOT deployment. ICT Express, 5, 1–7.

    Article  Google Scholar 

  36. ETSI. (2020). LTE, Architecture enhancements for non-3GPP accesses (3GPP TS 23.402 version 16.0.0 Release 16). ETSI. URL www.etsi.org/deliver/etsi_ts/123400_123499/123402/16.00.00_60/ts_123402v 160000p.pdf.

  37. Ayoub, W., Mroue, M., Samhat, A.E., Nouvel, F., & Prévotet, J.-C. (2019). Schc-based solution for roaming in lorawan. In International conference on broadband and wireless computing, communication and applications, Springer, pp. 162–172.

  38. Ayoub, W., Mroue, M., Nouvel, F., Samhat, A.E., & Prévotet, J.-C. (2018b). Towards ip over lpwans technologies: Lorawan, dash7, nb-iot. In 2018 sixth international conference on digital information, networking, and wireless communications (dinwc), IEEE, pp. 43–47.

  39. IBM, (2020). URL https://www.ibm.com/support/knowledgecenter/SSFMBX/com.ibm.swg.im.dashdb.sql.ref.doc/doc/r0008474.html.

  40. Vigano, L. (2006). Automated security protocol analysis with the avispa tool. Electronic Notes in Theoretical Computer Science, 155, 61–86.

    Article  Google Scholar 

  41. Zorbas, D., Abdelfadeel, K., Kotzanikolaou, P., & Pesch, D. (2020). Ts-lora: Time-slotted lorawan for the industrial internet of things. Computer Communications, 153, 1–10.

    Article  Google Scholar 

  42. Jradi, H. (2021a). URL https://github.com/HassanJradi/intra-domain-solution. ns-3 Implementation source codes.

  43. Jradi, H. (2021b). URL https://github.com/HassanJradi/AVISPA-Validation-Code. AVISPA HLPSL codes.

  44. Ryu, S., Kim, G.-Y., Kim, B., & Mun, Y. (2008). A scheme to reduce packet loss during pmipv6 handover considering authentication. In 2008 International conference on computational sciences and its applications, IEEE, pp. 47–51.

  45. Burrows, M., Abadi, M., & Needham, R.M. (1989). A logic of authentication. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 426(1871):233–271.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Jradi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Cost analysis

Appendix: Cost analysis

See Table 5.

$$\begin{aligned}&T_{R}^{M1} = \frac{L_{M_1}}{R_b} + \tau = \frac{L_{ID}+L_{TS}+L_H+O_{L2}}{R_b} + \tau \\&T_{R}^{M2} = \frac{L_{M_2}}{R_b} + \tau = \frac{L_{ID}+L_{W}+L_{TS}+L_H+O_{L2}}{R_b} + \tau \\&T_{R}^{M3} = T_{R}^{M4} = \frac{L_{ID}+L_{TS}+L_H+O_{L2}}{R_b} + \tau \\&T_R = T_{R}^{M1} + T_{R}^{M2} + T_{R}^{M3} + T_{R}^{M4}\\&T_R = \frac{4L_{ID}+4L_{TS}+5L_H+4O_{L2}}{R_b} + 4\tau = \frac{2368}{R_b} + 4\tau \\ \end{aligned}$$
Table 5 Numerical values

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jradi, H., Nouvel, F., Samhat, A.E. et al. Secure proxy MIPv6-based mobility solution for LPWAN. Wireless Netw 29, 69–85 (2023). https://doi.org/10.1007/s11276-022-03097-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03097-4

Keywords

Navigation