Skip to main content
Log in

A node selection method for cooperative location estimation in high density wireless networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In a cooperative location estimation system, all nodes share their location information in the network. Each node itself can use this shared inaccurate location information to estimate or improve its location. In a network with a high number of nodes, using all available data in location estimation of a specific node requires considerable amount of data processing. In order to reduce the complexity of data processing for location estimation, here we address an algorithm to select some fixed number of nodes for participating their data in location estimation of the target node. The assumed distributed cooperative location estimation method, requires an estimate of the distance between the target node and the other participating nodes. We have obtained a closed form formula for Bayesian Cramer–Rao lower bound (BCRLB) in the assumed network. Based on the BCRLB, a node selection algorithm is proposed which decreases the required computations without a significant reduction in the location estimation accuracy compared with processing all the available data. Furthermore, using this algorithm reduces the number of distance measurements. Computer simulations and field experiment are used to study the performance of the proposed node selection algorithm on the location estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We have to pronaunce that reducing the required number of data communication is not the goal of this paper.

  2. Note that according to the definition of \({\varvec{ \Psi }}_k\) in (5), it is a positive-definite matrix. Thus, the approximation is valid whenever \(r_k^2\) is higher than \(\sigma ^2_k\).

  3. The determinant of a \(2\times 2\) matrix \(\mathbf{F}_0\) is \(\mathrm{det }(\mathbf{F}_0)=[\mathbf{F}_0]_{1,1} [\mathbf{F}_0]_{2,2} - [\mathbf{F}_0]_{1,2} [\mathbf{F}_0]_{2,1}\) [29].

  4. Decimal degree coordinates of one point inside the sports field are: 29.644961, 52.517834.

References

  1. Ketabalian, H., Biguesh, M., & Sheikhi, A. (2020). A closed-form solution for localization based on RSS. IEEE Transactions on Aerospace and Electronic Systems, 56(2), 912–923.

    Article  Google Scholar 

  2. Wang, Q., Duan, Z., & Li, X. R. (2020). Three-dimensional location estimation using biased RSS measurements. IEEE Transactions on Aerospace and Electronic Systems, 56(6), 4673–4688.

    Article  Google Scholar 

  3. Huang, B., Yao, Z., Cui, X., & Lu, M. (2016). Dilution of precision analysis for GNSS collaborative positioning. IEEE Transactions on Vehicular Technology, 65(5), 3401–3415.

    Article  Google Scholar 

  4. Angjelichinoski, M., Denkovski, D., Atanasovski, V., & Gavrilovska, L. (2015). Cramér-Rao lower bounds of RSS-based localization with anchor position uncertainty. IEEE Transactions on Information Theory, 61(5), 2807–2834.

    Article  MathSciNet  MATH  Google Scholar 

  5. Shen, Y., & Win, M. Z. (2010). Fundamental limits of wideband localization- part I: A general framework. IEEE Transactions on Information Theory, 56(10), 4956–4980.

    Article  MathSciNet  MATH  Google Scholar 

  6. Shen, Y., Wymeersch, H., & Win, M. Z. (2010). Fundamental limits of wideband localization- part II: cooperative networks. IEEE Transactions on Information Theory, 56(10), 4981–5000.

    Article  MathSciNet  MATH  Google Scholar 

  7. Win, M. Z., Shen, Y., & Dai, W. (2018). A theoretical foundation of network localization and navigation. Proceedings of the IEEE, 106(7), 1136–1165.

    Article  Google Scholar 

  8. Heng, L., & Gao, G. X. (2017). Accuracy of range-based cooperative positioning: A lower bound analysis. IEEE Transactions on Aerospace and Electronic Systems, 53(5), 2304–2316.

    Article  Google Scholar 

  9. Zhong, W., Luo, X., Li, X., Yan, H., & Guan, X. (2020). Lower bound accuracy of bearing-based localization for wireless sensor networks. IEEE Transactions on Signal and Information Processing over Networks, 6, 556–569.

    Article  MathSciNet  Google Scholar 

  10. Zhou, B., Chen, Q., Xiao, P., & Zhao, L. (2017). On the spatial error propagation characteristics of cooperative localization in wireless networks. IEEE Transactions on Vehicular Technology, 66(2), 1647–1658.

    Article  Google Scholar 

  11. Das, K., & Wymeersch, H. (2012). Censoring for Bayesian cooperative positioning in dense wireless networks. IEEE Journal on Selected Areas in Communications, 30(9), 1835–1842.

    Article  Google Scholar 

  12. Naseri, H., & Koivunen, V. (2019). A Bayesian algorithm for distributed network localization using distance and direction data. IEEE Transactions on Signal and Information Processing over Networks, 5(2), 290–304.

    Article  MathSciNet  Google Scholar 

  13. Meyer, F., Hlinka, O., & Hlawatsch, F. (2014). Sigma point belief propagation. IEEE Signal Processing Letters, 21(2), 145–149.

    Article  Google Scholar 

  14. Wymeersch, H., Lien, J., & Win, M. Z. (2009). Cooperative localization in wireless networks. Proceedings of the IEEE, 97(2), 427–450.

    Article  Google Scholar 

  15. Shi, Y., Cui, Q., Cao, S., Zhang, X., & Tao, X. (2014). Performance relationship between distributed and centralised cooperative localizations. Electronics Letters, 50(2), 127–128.

    Article  Google Scholar 

  16. Cui, Q., Shi, Y., Zhang, X., Cao, S., & Tao, X. (2014). Performance analyses and enhancement of distributed cooperative localisation on position ambiguity. IET Communications, 8(16), 2881–2890.

    Article  Google Scholar 

  17. Liu, K., Lim, H. B., Frazzoli, E., Ji, H., & Lee, V. C. S. (2014). Improving positioning accuracy using gps pseudorange measurements for cooperative vehicular localization. IEEE Transactions on Vehicular Technology, 63(6), 2544–2556.

    Article  Google Scholar 

  18. Zhang, S., et al. (2020). Distributed direct localization suitable for dense networks. IEEE Transactions on Aerospace and Electronic Systems, 56(2), 1209–1227.

    Article  Google Scholar 

  19. Velde, S. V. D., de Abreu, G. T. F., & Steendam, H. (2015). Improved censoring and NLOS avoidance for wireless localization in dense networks. IEEE Journal on Selected Areas in Communications, 33(11), 2302–2312.

    Article  Google Scholar 

  20. Hadzic, S. & Rodriguez, J. (2011). Utility based node selection scheme for cooperative localization. In the International Conference on Indoor Positioning and Indoor Navigation (IPIN). Guimaraes.

  21. Chen, Y., Yang, Q., Yin, J., & Chai, X. (2006). Power efficient access point selection for indoor location estimation. IEEE Transactions on Knowledge and Data Engineering, 18(7), 877–888.

    Article  Google Scholar 

  22. Ermel, E., Fladenmuller, A., Pujolle, G. & Cotton A. (2004). On selecting nodes to improve estimated positions. In the International Conference on Mobile and Wireless Communication Networks (MWCN 2004).

  23. Hoang, G.M., Denis, B., Harri, J. & Slock, D.T.M. (2015). Select thy neighbors: Low complexity link selection for high precision cooperative vehicular localization. In The IEEE Vehicular Networking Conference (VNC). Kyoto.

  24. Wang, T., Conti, A., & Win, M. Z. (2019). Network navigation with scheduling: Distributed algorithms. IEEE/ACM Transactions on Networking, 27(4), 1319–1329.

    Article  Google Scholar 

  25. Kay, S. M. (1993). Fundamentals of statistical signal processing: Estimation theory. Prentice Hall.

    MATH  Google Scholar 

  26. Van Trees, H. L. (1968). Detection, estimation, and modulation theory: Part I. Wiley.

    MATH  Google Scholar 

  27. Wan, E.A. & Van Der Merwe, R. (2000). The unscented kalman filter for nonlinear estimation. In The IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium (AS-SPCC). Canada.

  28. Julier, S. J., & Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3), 401–422.

    Article  Google Scholar 

  29. Lütkepohl, H. (1996). Handbook of matrices. Wiley.

    MATH  Google Scholar 

  30. Firdaus, S., & Uddin, M. D. A. (2015). A survey on clustering algorithms and complexity analysis. IJCSI International Journal of Computer Science Issues, 12, 62–85.

    Google Scholar 

  31. Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 881–892.

    Article  MATH  Google Scholar 

  32. Arthur, D., & Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding. In The Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms.

  33. Singh, A., Yadav, A., & Rana, A. (2013). K-means with three different distance metrics. International Journal of Computer Applications, 67(10), 13–17.

    Article  Google Scholar 

  34. Bora, D. J., & Gupta, A. K. (2014). Effect of different distance measures on the performance of k-means algorithm: an experimental study in Matlab. International Journal of Computer Science and Information Technologies, 5, 2501–2506.

    Google Scholar 

Download references

Acknowledgements

All data generated or analysed during this study are included in this published article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrzad Biguesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Approximation of \({\varvec{ \Psi }}_k\) using the second order Taylor series

Appendix A Approximation of \({\varvec{ \Psi }}_k\) using the second order Taylor series

The matrix \({\varvec{ \Psi }}_k\) in (5) can be written as \({\varvec{ \Psi }}_k = \frac{1}{\sigma _{n_k}^2 } \mathrm{E}_{\mathbf{p}_{0k}} \left\{ \mathbf{G}_k \right\}\) where \(\mathbf{G}_k \triangleq \mathbf{q}_k \mathbf{q}_k ^T\), \(\mathbf{q}_k \triangleq \frac{\mathbf{p}_{0k} }{ \Vert \mathbf{p}_{0k} \Vert }\) and \(\mathbf{p}_{0k} \triangleq \mathbf{p}_0-\mathbf{p}_k\). The Taylor expansion of (ij)th element of \(\mathbf{G}_k(\mathbf{p}_{0k})\) (i.e., \([\mathbf{G}_k(\mathbf{p}_{0k})]_{i,j}=\mathbf{e}_i^T \mathbf{G}_k(\mathbf{p}_{0k}) \mathbf{e}_j\)) around \(\overline{\mathbf{p}_{0k}} \triangleq \mathrm{E}\{ \mathbf{p}_{0k} \}\) is

$$\begin{aligned}&[\mathbf{G}_k(\mathbf{p}_{0k})]_{i,j} \approx [\mathbf{G}_k(\overline{\mathbf{p}_{0k}})]_{i,j} \nonumber \\&\quad + (\mathbf{p}_{0k} - \overline{\mathbf{p}_{0k}})^T \bigtriangledown _{\mathbf{p}_{0k}}[\mathbf{G}_k(\mathbf{p}_{0k})]_{i,j}\Big |_{\mathbf{p}_{0k}=\overline{\mathbf{p}_{0k}}} \nonumber \\&\quad + \frac{1}{2!} (\mathbf{p}_{0k}-\overline{\mathbf{p}_{0k}})^T \mathbf{H}(\mathbf{p}_{0k}) \Big |_{\mathbf{p}_{0k}=\overline{\mathbf{p}_{0k}}} (\mathbf{p}_{0k} - \overline{\mathbf{p}_{0k}})\\&\quad + \ldots \end{aligned}$$
(28)

where \(\mathbf{H}(\mathbf{p}_{0k})\) is the gradient of \(\bigtriangledown _{\mathbf{p}_{0k}}[\mathbf{G}_k(\mathbf{p}_{0k})]_{i,j}\).

With some mathematical manipulation, \(\bigtriangledown _{\mathbf{p}_{0k}}[\mathbf{G}_k(\mathbf{p}_{0k})]_{i,j}\) and \(\mathbf{H}(\mathbf{p}_{0k})\) can be written as

$$\begin{aligned} \bigtriangledown _{\mathbf{p}_{0k}}[\mathbf{G}_k(\mathbf{p}_{0k})]_{i,j} = \frac{1}{\Vert \mathbf{p}_{0k} \Vert } (\mathbf{I}-\mathbf{q}_k\mathbf{q}_k^T) \mathbf{A}_{ij} \mathbf{q}_k , \end{aligned}$$
(29)

and

$$\begin{aligned}&\mathbf{H}(\mathbf{p}_{0k}) = \frac{1}{\Vert \mathbf{p}_{0k} \Vert ^2} \Big ( \frac{1}{2}\mathbf{A}_{ij}(\mathbf{I}-4\mathbf{q}_k\mathbf{q}_k^T) + \frac{1}{2}(\mathbf{I}-4\mathbf{q}_k\mathbf{q}_k^T)\mathbf{A}_{ij} \nonumber \\&\qquad \qquad \qquad - (\mathbf{q}_k^T\mathbf{A}_{ij}\mathbf{q}_k)(\mathbf{I}-4\mathbf{q}_k\mathbf{q}_k^T) \Big ) , \end{aligned}$$
(30)

where \(\mathbf{A}_{ij} \triangleq \mathbf{e}_i \mathbf{e}_j^T + \mathbf{e}_j \mathbf{e}_i^T\). Hence, the (ij)th element of \({\varvec{ \Psi }}_k\) can be written as

$$\begin{aligned}&[{\varvec{ \Psi }}_k ]_{i,j} \approx \frac{1}{\sigma _{n_k}^2 } \mathbf{e}_i^T \overline{\mathbf{q}_k}\; \overline{\mathbf{q}_k}^T \mathbf{e}_j \nonumber \\&\qquad + \frac{1}{2\sigma _{n_k}^2 } \mathrm{E}_{\mathbf{p}_{0k}} \left\{ (\mathbf{p}_{0k}-\overline{\mathbf{p}_{0k}})^T \mathbf{H}(\overline{\mathbf{p}_{0k}}) (\mathbf{p}_{0k} - \overline{\mathbf{p}_{0k}}) \right\} , \end{aligned}$$
(31)

where \(\overline{\mathbf{q}_k}\triangleq \frac{\overline{\mathbf{p}_{0k}}}{ \Vert \overline{\mathbf{p}_{0k}} \Vert }\).

Using the equality of \(\mathbf{x}^T\mathbf{y}= \mathrm{tr}(\mathbf{y}\mathbf{x}^T)\) for any \(\mathbf{x}\) and \(\mathbf{y}\) vectors, we have

$$\begin{aligned}&[{\varvec{ \Psi }}_k ]_{i,j} \approx \frac{1}{\sigma _{n_k}^2 } \mathbf{e}_i^T \overline{\mathbf{q}_k}\; \overline{\mathbf{q}_k}^T \mathbf{e}_j \nonumber \\&\quad + \frac{1}{2\sigma _{n_k}^2 } \mathrm{tr}\Big ( \mathrm{E}_{\mathbf{p}_{0k}} \left\{ (\mathbf{p}_{0k} - \overline{\mathbf{p}_{0k}}) (\mathbf{p}_{0k}-\overline{\mathbf{p}_{0k}})^T \right\} \mathbf{H}(\overline{\mathbf{p}_{0k}}) \Big ). \end{aligned}$$
(32)

By defining \(\mathbf{C}_k \triangleq \mathrm{E}_{\mathbf{p}_{0k}} \left\{ (\mathbf{p}_{0k} - \overline{\mathbf{p}_{0k}}) (\mathbf{p}_{0k}-\overline{\mathbf{p}_{0k}})^T \right\} =\mathbf{R}_0+\mathbf{R}_k\), we can rewrite \([{\varvec{ \Psi }}_k ]_{i,j}\) as

$$\begin{aligned}{}[{\varvec{ \Psi }}_k ]_{i,j} \approx \frac{1}{\sigma _{n_k}^2 } \mathbf{e}_i^T \overline{\mathbf{q}_k}\; \overline{\mathbf{q}_k}^T \mathbf{e}_j + \frac{1}{2\sigma _{n_k}^2 } \mathrm{tr}\Big ( \mathbf{C}_k \mathbf{H}(\overline{\mathbf{p}_{0k}}) \Big ). \end{aligned}$$
(33)

Replacing (30) in (33), and with some mathematical manipulation \({\varvec{ \Psi }}_k\) can be written as

$$\begin{aligned}&{\varvec{ \Psi }}_k \approx \frac{1}{\sigma _{n_k}^2 } \Bigg ( \overline{\mathbf{q}_k}\; \overline{\mathbf{q}_k}^T + \frac{1}{\Vert \overline{\mathbf{p}_{0k}} \Vert ^2 } \Big (\mathbf{C}_k -2\mathbf{C}_k\overline{\mathbf{q}_k}\; \overline{\mathbf{q}_k}^T\nonumber \\&\qquad \; -2\overline{\mathbf{q}_k}\; \overline{\mathbf{q}_k}^T \mathbf{C}_k- \mathrm{tr}(\mathbf{C}_k) \overline{\mathbf{q}_k}\; \overline{\mathbf{q}_k}^T + 4(\overline{\mathbf{q}_k}^T\mathbf{C}_k\overline{\mathbf{q}_k})\overline{\mathbf{q}_k}\; \overline{\mathbf{q}_k}^T \Big ) \Bigg ). \end{aligned}$$
(34)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golihaghighi, N., Biguesh, M. A node selection method for cooperative location estimation in high density wireless networks. Wireless Netw 29, 97–108 (2023). https://doi.org/10.1007/s11276-022-03083-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03083-w

Keywords

Navigation