Skip to main content

Advertisement

Log in

MRI-guided sacroiliac joint injections in children and adults: current practice and future developments

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Common etiologies of low back pain include degenerative arthrosis and inflammatory arthropathy of the sacroiliac joints. The diagnostic workup revolves around identifying and confirming the sacroiliac joints as a pain generator. Diagnostic sacroiliac joint injections often serve as functional additions to the diagnostic workup through eliciting a pain response that tests the hypothesis that the sacroiliac joints do or do not contribute to the patient’s pain syndrome. Therapeutic sacroiliac joint injections aim to provide medium- to long-term relief of symptoms and reduce inflammatory activity and, ultimately, irreversible structural damage. Ultrasonography, fluoroscopy, computed tomography, and magnetic resonance imaging (MRI) may be used to guide sacroiliac joint injections. The populations that may benefit most from MRI-guided sacroiliac joint procedures include children, adolescents, adults of childbearing age, and patients receiving serial injections due to the ability of interventional MRI to avoid radiation exposure. Most clinical wide-bore MRI systems can be used for MRI-guided sacroiliac joint injections. Turbo spin echo pulse sequences optimized for interventional needle display visualize the needle tip with an error margin of < 1 mm or less. Published success rates of intra-articular sacroiliac joint drug delivery with MRI guidance range between 87 and 100%. The time required for MR-guided sacroiliac joint injections in adults range between 23–35 min and 40 min in children. In this article, we describe techniques for MRI-guided sacroiliac joint injections, share our practice of incorporating interventional MRI in the care of patients with sacroiliac joint mediated pain, discuss the rationales, benefits, and limitations of interventional MRI, and conclude with future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Fortin JD, Dwyer AP, West S, Pier J. Sacroiliac joint pain referral maps upon applying a new injection/arthrography technique Part I Asymptomatic volunteers. Spine (Phila Pa 1976). 1994;19(13):1475–82.

    Article  CAS  PubMed  Google Scholar 

  2. Palsson TS, Gibson W, Darlow B, Bunzli S, Lehman G, Rabey M, et al. Changing the narrative in diagnosis and management of pain in the sacroiliac joint area. Phys Ther. 2019;99(11):1511–9.

    Article  PubMed  Google Scholar 

  3. Fritz J, Niemeyer T, Clasen S, Wiskirchen J, Tepe G, Kastler B, et al. Management of chronic low back pain: rationales, principles, and targets of imaging-guided spinal injections. Radiographics. 2007;27(6):1751–71.

    Article  PubMed  Google Scholar 

  4. Dussault RG, Kaplan PA, Anderson MW. Fluoroscopy-guided sacroiliac joint injections. Radiology. 2000;214(1):273–7.

    Article  CAS  PubMed  Google Scholar 

  5. Silbergleit R, Mehta BA, Sanders WP, Talati SJ. Imaging-guided injection techniques with fluoroscopy and CT for spinal pain management. Radiographics. 2001;21(4):927–39.

    Article  CAS  PubMed  Google Scholar 

  6. Fritz J, Henes JC, Thomas C, Clasen S, Fenchel M, Claussen CD, et al. Diagnostic and interventional MRI of the sacroiliac joints using a 1.5-T open-bore magnet a one-stop-shopping approach. AJR Am J Roentgenol. 2008;191(6):1717–24.

    Article  PubMed  Google Scholar 

  7. Zacchino M, Almolla J, Canepari E, Merico V, Calliada F. Use of ultrasound-magnetic resonance image fusion to guide sacroiliac joint injections: a preliminary assessment. J Ultrasound. 2013;16(3):111–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chuang CW, Hung SK, Pan PT, Kao MC. Diagnosis and interventional pain management options for sacroiliac joint pain. Ci Ji Yi Xue Za Zhi. 2019;31(4):207–10.

    PubMed  Google Scholar 

  9. Alaia EF, Chhabra A, Simpfendorfer CS, Cohen M, Mintz DN, Vossen JA, et al. MRI nomenclature for musculoskeletal infection. Skeletal Radiol. 2021;50(12):2319–47.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tonosu J, Kurosawa D, Nishi T, Ito K, Morimoto D, Musha Y, et al. The association between sacroiliac joint-related pain following lumbar spine surgery and spinopelvic parameters: a prospective multicenter study. Eur Spine J. 2019;28(7):1603–9.

    Article  PubMed  Google Scholar 

  11. Marker DR, U-Thainual P, Ungi T, Flammang AJ, Fichtinger G, Iordachita II, et al. MR-guided perineural injection of the ganglion impar technical considerations and feasibility. Skeletal Radiol. 2016;45(5):591–7.

    Article  PubMed  Google Scholar 

  12. Vleeming A, Schuenke MD, Masi AT, Carreiro JE, Danneels L, Willard FH. The sacroiliac joint: an overview of its anatomy, function and potential clinical implications. J Anat. 2012;221(6):537–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ziegeler K, Kreutzinger V, Proft F, Poddubnyy D, Hermann KGA, Diekhoff T. Joint anatomy in axial spondyloarthritis: strong associations between sacroiliac joint form variation and symptomatic disease. Rheumatology (Oxford). 2021;61(1):388–93.

    Article  PubMed  Google Scholar 

  14. Barker PJ, Hapuarachchi KS, Ross JA, Sambaiew E, Ranger TA, Briggs CA. Anatomy and biomechanics of gluteus maximus and the thoracolumbar fascia at the sacroiliac joint. Clin Anat. 2014;27(2):234–40.

    Article  CAS  PubMed  Google Scholar 

  15. Fritz J, Fritz B, Dellon AL. Sacrotuberous ligament healing following surgical division during transgluteal pudendal nerve decompression: a 3-Tesla MR neurography study. PLoS ONE. 2016;11(11):e0165239.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cho HJ, Kwak DS. Movement of the sacroiliac joint: anatomy, systematic review, and biomechanical considerations. Proc Inst Mech Eng H. 2021;235(3):357–64.

    Article  PubMed  Google Scholar 

  17. Lin WY, Wang SJ. Influence of age and gender on quantitative sacroiliac joint scintigraphy. J Nucl Med. 1998;39(7):1269–72.

    CAS  PubMed  Google Scholar 

  18. Kiil RM, Arnbak BA, Zejden A, Schiottz-Christensen B, Hendricks O, Jurik AG. Pregnancy-related sacroiliac joint findings in females with low back pain: a four-year magnetic resonance imaging follow-up study. Acta Radiol. 2022;63(6):775–84.

    Article  PubMed  Google Scholar 

  19. Joshi DH, Thawait GK, Del Grande F, Fritz J. MRI-guided cryoablation of the posterior femoral cutaneous nerve for the treatment of neuropathy-mediated sitting pain. Skeletal Radiol. 2017;46(7):983–7.

    Article  PubMed  Google Scholar 

  20. Aydin SM, Gharibo CG, Mehnert M, Stitik TP. The role of radiofrequency ablation for sacroiliac joint pain: a meta-analysis. PM R. 2010;2(9):842–51.

    Article  PubMed  Google Scholar 

  21. Manchikanti L, Hirsch JA, Pampati V, Boswell MV. Utilization of facet joint and sacroiliac joint interventions in medicare population from 2000 to 2014: explosive growth continues! Curr Pain Headache Rep. 2016;20(10):58.

    Article  PubMed  Google Scholar 

  22. Zheng P, Schneider BJ, Yang A, McCormick ZL. Image-guided sacroiliac joint injections: an evidence-based review of best practices and clinical outcomes. PM R. 2019;11(Suppl 1):S98–104.

    PubMed  Google Scholar 

  23. Simopoulos TT, Manchikanti L, Gupta S, Aydin SM, Kim CH, Solanki D, et al. Systematic review of the diagnostic accuracy and therapeutic effectiveness of sacroiliac joint interventions. Pain Physician. 2015;18(5):E713–56.

    Article  PubMed  Google Scholar 

  24. Gunaydin I, Pereira PL, Fritz J, Konig C, Kotter I. Magnetic resonance imaging guided corticosteroid injection of sacroiliac joints in patients with spondylarthropathy Are multiple injections more beneficial? Rheumatol Int. 2006;26(5):396–400.

    Article  CAS  PubMed  Google Scholar 

  25. Chang E, Rains C, Ali R, Wines RC, Kahwati LC. Minimally invasive sacroiliac joint fusion for chronic sacroiliac joint pain: a systematic review. Spine J. 2022.

  26. Fritz J, Miller TT. Sonography and fluoroscopy guidance for percutaneous musculoskeletal procedures. Skeletal Radiol. 2017;46(2):225–6.

    Article  PubMed  Google Scholar 

  27. Khodarahmi I, Fritz J. The value of 3 tesla field strength for musculoskeletal magnetic resonance imaging. Invest Radiol. 2021;56(11):749–63.

    Article  PubMed  Google Scholar 

  28. Fritz J, Weiss CR. The state-of-the-art of interventional magnetic resonance imaging: part 1. Top Magn Reson Imaging. 2018;27(1):1–2.

    Article  PubMed  Google Scholar 

  29. Fritz J, Dellon AL, Williams EH, Belzberg AJ, Carrino JA. 3-Tesla high-field magnetic resonance neurography for guiding nerve blocks and its role in pain management. Magn Reson Imaging Clin N Am. 2015;23(4):533–45.

    Article  PubMed  Google Scholar 

  30. Fritz J, Chhabra A, Wang KC, Carrino JA. Magnetic resonance neurography-guided nerve blocks for the diagnosis and treatment of chronic pelvic pain syndrome. Neuroimaging Clin N Am. 2014;24(1):211–34.

    Article  PubMed  Google Scholar 

  31. Fritz J, Sequeiros RB, Carrino JA. Magnetic resonance imaging-guided spine injections. Top Magn Reson Imaging. 2011;22(4):143–51.

    Article  PubMed  Google Scholar 

  32. Fritz J, Konig CW, Gunaydin I, Clasen S, Kastler B, Kotter I, et al. Magnetic resonance imaging – guided corticosteroid-infiltration of the sacroiliac joints: pain therapy of sacroiliitis in patients with ankylosing spondylitis. Rofo. 2005;177(4):555–63.

    Article  CAS  PubMed  Google Scholar 

  33. Ziegeler K, Kreutzinger V, Diekhoff T, Roehle R, Poddubnyy D, Pumberger M, et al. Impact of age, sex, and joint form on degenerative lesions of the sacroiliac joints on CT in the normal population. Sci Rep. 2021;11(1):5903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fritz J, Tzaribachev N, Thomas C, Carrino JA, Claussen CD, Lewin JS, et al. Evaluation of MR imaging guided steroid injection of the sacroiliac joints for the treatment of children with refractory enthesitis-related arthritis. Eur Radiol. 2011;21(5):1050–7.

    Article  CAS  PubMed  Google Scholar 

  35. Sequeiros RB, Sinikumpu JJ, Ojala R, Jarvinen J, Fritz J. Pediatric musculoskeletal interventional MRI. Top Magn Reson Imaging. 2018;27(1):39–44.

    Article  PubMed  Google Scholar 

  36. Fritz J, Clasen S, Boss A, Thomas C, Konig CW, Claussen CD, et al. Real-time MR fluoroscopy-navigated lumbar facet joint injections: feasibility and technical properties. Eur Radiol. 2008;18(7):1513–8.

    Article  CAS  PubMed  Google Scholar 

  37. Fritz J, Thomas C, Clasen S, Claussen CD, Lewin JS, Pereira PL. Freehand real-time MRI-guided lumbar spinal injection procedures at 1.5 T: feasibility, accuracy, and safety. AJR Am J Roentgenol. 2009;192(4):W161-7.

    Article  PubMed  Google Scholar 

  38. Fritz J, Dellon AL, Williams EH, Rosson GD, Belzberg AJ, Eckhauser FE. Diagnostic accuracy of selective 3-T MR neurography-guided retroperitoneal genitofemoral nerve blocks for the diagnosis of genitofemoral neuralgia. Radiology. 2017;285(1):176–85.

    Article  PubMed  Google Scholar 

  39. Khodarahmi I, Brinkmann IM, Lin DJ, Bruno M, Johnson PM, Knoll F, et al. New-generation low-field magnetic resonance imaging of hip arthroplasty implants using slice encoding for metal artifact correction: first in vitro experience at 0.55 T and comparison with 1.5 T. Invest Radiol. 2022.

  40. Campbell-Washburn AE, Ramasawmy R, Restivo MC, Bhattacharya I, Basar B, Herzka DA, et al. Opportunities in interventional and diagnostic imaging by using high-performance low-field-strength MRI. Radiology. 2019;293(2):384–93.

    Article  PubMed  Google Scholar 

  41. Sonnow L, Gilson WD, Raithel E, Nittka M, Wacker F, Fritz J. Instrument visualization using conventional and compressed sensing SEMAC for interventional MRI at 3T. J Magn Reson Imaging. 2018;47(5):1306–15.

    Article  PubMed  Google Scholar 

  42. Fritz J, Pereira PL. MR-Guided pain therapy: principles and clinical applications. Rofo. 2007;179(9):914–24.

    Article  CAS  PubMed  Google Scholar 

  43. Del Grande F, Guggenberger R, Fritz J. Rapid musculoskeletal MRI in 2021: Value and optimized use of widely accessible techniques. AJR Am J Roentgenol. 2021;216(3):704–17.

    Article  PubMed  Google Scholar 

  44. Fritz J, Guggenberger R, Del Grande F. Rapid musculoskeletal MRI in 2021: clinical application of advanced accelerated techniques. AJR Am J Roentgenol. 2021;216(3):718–33.

    Article  PubMed  Google Scholar 

  45. Fritz J, Raithel E, Thawait GK, Gilson W, Papp DF. Six-fold acceleration of high-spatial resolution 3D SPACE MRI of the Knee through incoherent k-space undersampling and iterative reconstruction-first experience. Invest Radiol. 2016;51(6):400–9.

    Article  PubMed  Google Scholar 

  46. Dalili D, Ahlawat S, Rashidi A, Belzberg AJ, Fritz J. Cryoanalgesia of the anterior femoral cutaneous nerve (AFCN) for the treatment of neuropathy-mediated anterior thigh pain: anatomy and technical description. Skeletal Radiol. 2021;50(6):1227–36.

    Article  PubMed  Google Scholar 

  47. Fritz J, Sonnow L, Morris CD. Adjuvant MRI-guided percutaneous cryoablation treatment for aneurysmal bone cyst. Skeletal Radiol. 2019;48(7):1149–53.

    Article  PubMed  Google Scholar 

  48. Khodarahmi I, Isaac A, Fishman EK, Dalili D, Fritz J. Metal about the hip and artifact reduction techniques: from basic concepts to advanced imaging. Semin Musculoskelet Radiol. 2019;23(3):e68–81.

    Article  PubMed  Google Scholar 

  49. Thomas C, Wojtczyk H, Rempp H, Clasen S, Horger M, von Lassberg C, et al. Carbon fibre and nitinol needles for MRI-guided interventions: first in vitro and in vivo application. Eur J Radiol. 2011;79(3):353–8.

    Article  PubMed  Google Scholar 

  50. Thomas C, Springer F, Rothke M, Rempp H, Clasen S, Fritz J, et al. In vitro assessment of needle artifacts with an interactive three-dimensional MR fluoroscopy system. J Vasc Interv Radiol. 2010;21(3):375–80.

    Article  PubMed  Google Scholar 

  51. Khodarahmi I, Bonham LW, Weiss CR, Fritz J. Needle heating during interventional magnetic resonance imaging at 1.5- and 3.0-T field strengths. Invest Radiol. 2020;55(6):396–404.

    Article  PubMed  Google Scholar 

  52. Fritz J, Ahlawat S, Demehri S, Thawait GK, Raithel E, Gilson WD, et al. Compressed sensing SEMAC: 8-fold Accelerated high resolution metal artifact reduction MRI of cobalt-chromium knee arthroplasty implants. Invest Radiol. 2016;51(10):666–76.

    Article  CAS  PubMed  Google Scholar 

  53. Khodarahmi I, Kirsch J, Chang G, Fritz J. Metal artifacts of hip arthroplasty implants at 1.5-T and 3.0-T a closer look into the B1 effects. Skeletal Radiol. 2021;50(5):1007–15.

    Article  PubMed  Google Scholar 

  54. Ahlawat S, Stern SE, Belzberg AJ, Fritz J. High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants. Skeletal Radiol. 2017;46(7):897–908.

    Article  PubMed  Google Scholar 

  55. Fritz J, Fritz B, Thawait GK, Raithel E, Gilson WD, Nittka M, et al. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC. Skeletal Radiol. 2016;45(10):1345–56.

    Article  PubMed  Google Scholar 

  56. Deli M, Fritz J, Mateiescu S, Busch M, Carrino JA, Becker J, et al. Saline as the sole contrast agent for successful MRI-guided epidural injections. Cardiovasc Intervent Radiol. 2013;36(3):748–55.

    Article  PubMed  Google Scholar 

  57. Dalili D, Isaac A, Rashidi A, Astrom G, Fritz J. Image-guided sports medicine and musculoskeletal tumor interventions: a patient-centered model. Semin Musculoskelet Radiol. 2020;24(3):290–309.

    Article  PubMed  Google Scholar 

  58. Streitparth F, Walter T, Wonneberger U, Chopra S, Wichlas F, Wagner M, et al. Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features. Eur Radiol. 2010;20(2):395–403.

    Article  CAS  PubMed  Google Scholar 

  59. Dalili D, Ahlawat S, Isaac A, Rashidi A, Fritz J. Selective MR neurography-guided anterior femoral cutaneous nerve blocks for diagnosing anterior thigh neuralgia: anatomy, technique, diagnostic performance, and patient-reported experiences. Skeletal Radiol. 2022.

  60. Fritz J, Bizzell C, Kathuria S, Flammang AJ, Williams EH, Belzberg AJ, et al. High-resolution magnetic resonance-guided posterior femoral cutaneous nerve blocks. Skeletal Radiol. 2013;42(4):579–86.

    Article  PubMed  Google Scholar 

  61. Maurer MH, Schreiter N, de Bucourt M, Grieser C, Renz DM, Hartwig T, et al. Cost comparison of nerve root infiltration of the lumbar spine under MRI and CT guidance. Eur Radiol. 2013;23(6):1487–94.

    Article  CAS  PubMed  Google Scholar 

  62. Fritz J, U-Thainual P, Ungi T, Flammang AJ, Fichtinger G, Iordachita II, et al. Augmented reality visualization with use of image overlay technology for MR imaging-guided interventions: assessment of performance in cadaveric shoulder and hip arthrography at 15 T. Radiology. 2021;265(1):254–9.

    Article  Google Scholar 

  63. Fritz J, U-Thainual P, Ungi T, Flammang AJ, Kathuria S, Fichtinger G, et al. MR-guided vertebroplasty with augmented reality image overlay navigation. Cardiovasc Intervent Radiol. 2014;37(6):1589–96.

    Article  PubMed  Google Scholar 

  64. Anand M, King F, Ungi T, Lasso A, Rudan J, Jayender J, et al. Design and development of a mobile image overlay system for needle interventions. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6159–62.

    CAS  PubMed  Google Scholar 

  65. U-Thainual P, Fritz J, Moonjaita C, Ungi T, Flammang A, Carrino JA, et al. MR image overlay guidance: system evaluation for preclinical use. Int J Comput Assist Radiol Surg. 2013;8(3):365–78.

    Article  PubMed  Google Scholar 

  66. Fritz J, U-Thainual P, Ungi T, Flammang AJ, Fichtinger G, Iordachita II, et al. Augmented reality visualisation using an image overlay system for MR-guided interventions: technical performance of spine injection procedures in human cadavers at 1.5 Tesla. Eur Radiol. 2013;23(1):235–45.

    Article  PubMed  Google Scholar 

  67. Fritz J, Thainual P, Ungi T, Flammang AJ, Cho NB, Fichtinger G, et al. Augmented reality visualization with image overlay for MRI-guided intervention: accuracy for lumbar spinal procedures with a 1.5-T MRI system. AJR Am J Roentgenol. 2021;198(3):W266-73.

    Article  Google Scholar 

  68. Li G, Patel NA, Wang Y, Dumoulin C, Loew W, Loparo O, et al. Fully actuated body-mounted robotic system for MRI-guided lower back pain injections: initial phantom and cadaver studies. IEEE Robot Autom Lett. 2020;5(4):5245–51.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was in part funded by National Institutes of Health grants R01 EB025179 and R01 CA118371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Fritz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

The sacroiliac joints are a substantial source of spinal and low back pain, with the most common etiologies including degenerative arthrosis and inflammatory arthropathy.

Selective sacroiliac joint injections serve as functional additions to the diagnostic workup to test the hypothesis that the sacroiliac joints do or do not contribute to the patient’s pain syndrome.

The populations that may benefit most from MRI-guided sacroiliac joint procedures include children, adolescents, adults of childbearing age, and patients receiving serial injections due to the avoidance of radiation exposure.

Success rates of intra-articular sacroiliac joint drug delivery with MRI guidance range between 87 and 100%, with procedure times ranging from 23 to 40 min for children and adults.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalili, D., Isaac, A. & Fritz, J. MRI-guided sacroiliac joint injections in children and adults: current practice and future developments. Skeletal Radiol 52, 951–965 (2023). https://doi.org/10.1007/s00256-022-04161-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-022-04161-y

Keywords

Navigation