Skip to main content
Log in

Brownian Photomotors Based on Organic Compounds: A Review

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The main prerequisites necessary for the construction of molecular motors, in particular, organic compound-based light-driven motors, are considered and universal requirements for their operation are formulated. Various types of Brownian motors differing in the forms of directed motion are analyzed. Development prospects and molecular design strategies are provided for such nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. A. F. Huxley, Progress in Biophysics and Biophysical Chemistry, J. A. V. Butler, B. Katz (eds.), Pergamon Press Book, New York, Vol. 7 (1957), pp. 255-318.

  2. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Addison-Wesley, Reading, MA, Vol. 1 (1963).

  3. J. H. Quastel, Proc. R. Soc. B., 163, No. 991, 169-196 (1965).

    CAS  Google Scholar 

  4. F. Julicher, A. Ajdari, and J. Prost, Rev. Mod. Phys., 69, No. 4, 1269-1281 (1997).

    Article  CAS  Google Scholar 

  5. R. D. Astumian, Science, 276, No. 5314, 917-922 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. K. Kinosita Jr., R. Yasuda, H. Noji, et al., Cell, 93, No. 1, 21-24 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. P. Reimann, Phys. Rep., 361, No. 2-4, 57-265 (2002).

    Article  CAS  Google Scholar 

  8. P. Mobian, J. M. Kern, and J. P. Sauvage, Angew. Chem. Int. Ed., 43, No. 18, 2392-2395 (2004).

    Article  CAS  Google Scholar 

  9. V. Balzani, M. Clemente-Leon, A. Credi, et al., Aust. J. Chem., 59, No. 3, 193-206 (2006), https://doi.org/10.1071/CH06019.

    Article  CAS  Google Scholar 

  10. M. L. Dekhtyar, A. A. Ishchenko, and V. M. Rozenbaum, J. Phys. Chem. B., 110, No. 41, 20111-20114 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. P. Hanggi and F. Marchesoni, Rev. Mod. Phys., 81, No. 1, 387-442 (2009).

    Article  Google Scholar 

  12. J. Michl and E. C. H. Sykes, ACS Nano, 3, No. 5, 1042-1048 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Molecular Machines and Motors: Recent Advances and Perspectives, Topics in Current Chemistry, A. Credi, S. Silvi, and M. Venturi (eds.), Vol. 354, Springer-Verlag, Berlin, Heidelberg (2014).

  14. S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, and A. L. Nussbaumer, Chem. Rev., 115, No. 18, 10081-10206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D. Cubero and F. Renzoni, Brownian Ratchets: From Statistical Physics to Bio and Nano-motors, Cambridge University Press, Cambridge, UK (2016).

    Book  Google Scholar 

  16. J. A. Fornes, Principles of Brownian and Molecular Motors (Springer Series in Biophysics, 21), Springer, Cham, Switzerland (2021).

    Book  Google Scholar 

  17. Press release: The Nobel Prize in Chemistry 2016, http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2016/press.html.

  18. R. D. Astumian and P. Hanggi, Phys. Today, 55, No. 11, 33-39 (2002), https://doi.org/10.1063/1.1535005.

    Article  Google Scholar 

  19. M. Baroncini, S. Silvi, and A. Credi, Chem. Rev., 120, No. 1, 200-268 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. F. Zhang, R. Mundaca-Uribe, N. Askarinam, et al., Adv. Mater., 34, No. 5, Art. 2107177 (2021), https://doi.org/10.1002/adma.202107177.

  21. M. Peplow, Nature, 525, No. 7567, 18-21 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. P. Kalinay and F. Slanina, Phys. Rev. E., 104, No. 6, Art. 064115 (2021).

  23. C. De Souza Silva, J. Van de Vondel, M. Morelle, and V. Moshchalkov, Nature, 440, No. 7084, 651-654 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. Yu. V. Gulyayev, A. S. Bugayev, V. M. Rozenbaum, and L. I. Trakhtenberg, Physics-Uspekhi, 190, No. 4, 337-354 (2020).

    Google Scholar 

  25. S. Kassem, T. van Leeuwen, A. S. Lubbe, et al., Chem. Soc. Rev., 46, No. 9, 2592-2621 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. C. McConnell, S. Brue, and S. Flynn, Economics, McGraw-Hill, New York (2021).

    Google Scholar 

  27. V. M. Rozenbaum, Khim. Fiz. Tekhnol. Poverkhni, 11, No. 1, 100-114 (2020).

    Article  Google Scholar 

  28. R. Ballardini, V. Balzani, M. T. Gandolfi, et al., Angew. Chem. Int. Ed., 32, No. 9, 1301-1303 (1993).

    Article  Google Scholar 

  29. W. R. Browne and B. L. Feringa, Annu. Rev. Phys. Chem., 60, 407-428 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. S. Saha and J. F. Stoddart, Chem. Soc. Rev., 36, No. 1, 77-92 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Y. B. Zheng, Q. Hao, Y.-W. Yang, et al., J. Nanophotonics, 4, No. 1, Art. 042501 (2010).

  32. B. L. Feringa and W. R. Browne (eds.), Molecular Switches, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2011).

  33. J. A. Findlay and J. D. Crowley, Tetrahedron Lett., 59, No. 4, 334-346 (2018).

    Article  CAS  Google Scholar 

  34. A. Cnossen, W. R. Browne, and B. L. Feringa, Molecular Machines and Motors: Recent Advances and Perspectives, Topics in Current Chemistry, A. Credi, S. Silvi, and M. Venturi (eds.), Vol. 354, Springer-Verlag, Berlin, Heidelberg (2014), pp. 139-162.

  35. S. Amirjalayer, A. Cnossen, W. R. Bronte, et al., J. Phys. Chem. A., 120, No. 43, 8606-8612 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. W. Danowski, F. Castiglioni, A. S. Sardjan, et al., J. Am. Chem. Soc., 142, No. 19, 9048-9056 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Z.-T. Shi, Y.-X. Hu, Z. Hu, et al., J. Am. Chem. Soc., 143, No. 1, 442-452 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. D. R. S. Pooler, A. S. Lubbe, S. Crespi, and B. L. Feringa, Chem. Sci., 12, No. 45, 14964-14986 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. B. L. Feringa, Angew. Chem. Int. Ed., 56, No. 37, 11060-11078 (2017).

    Article  CAS  Google Scholar 

  40. A. Gerwien, P. Mayer, and H. Dube, Nat. Commun., 10, 4449-4455 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. E. Carrascosa, C. Petermayer, M. Scholz, et al., ChemPhysChem., 21, No. 7, 680-685 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. E. Uhl, P. Mayer, and H. Dube, Angew. Chem. Int. Ed., 59, No. 14, 5730-5737 (2020).

    Article  CAS  Google Scholar 

  43. J. Wang and B. Durbeej, ChemistryOpen., 7, No. 8, 583-589 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. J. Wang and B. Durbeej, Comput. Theor. Chem., 1148, 27-32 (2019).

  45. J. Wang, B. Oruganti, and B. Durbeej, J. Org. Chem., 86, No. 8, 5552-5559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. N. Koumura, W. J. Zijlstra, R. A. van Delden, et al., Nature, 401, No. 6749, 152-155 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. R. Eelkema, M. M. Pollard, N. Katsonis, et al., J. Am. Chem. Soc., 128, No. 44, 14397-14407 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. B. Oruganti, C. Fang, and B. Durbeej, Phys. Chem. Chem. Phys., 17, No. 33, 21740-21751 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. B. Oruganti and B. Durbeej, J. Mol. Model, 22, No. 9, 219-229 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. J. Bauer, L. Hou, J. C. M. Kistemaker, and B. L. Feringa, J. Org. Chem., 79, No. 10, 4446-4455 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. D. R. S. Pooler, R. Pierron, S. Crespi, et al., Chem. Sci., 12, No. 21, 7486-7497 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. J. Wang, B. Oruganti, and B. Durbeej, Phys. Chem. Chem. Phys., 19, No. 10, 6952-6956 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. D. A. Leigh, J. K. Y. Wong, F. Dehez, and F. Zerbetto, Nature, 424, No. 6945, 174-179 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. D. Roke, S. J. Wezenberg, and B. L. Feringa, PNAS, 115, No. 38, 9423-9431 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. C. A. Schalley, K. Beizai, and F. Vogtle, Acc. Chem. Res., 34, No. 6, 465-476 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. A. Gerwien, P. Mayer, and H. Dube, J. Am. Chem. Soc., 140, No. 48, 16442-16445 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. E. Moulin, L. Faour, C. C. Carmona-Vargas, and N. Giuseppone, Adv. Mater., 32, No. 20, Art. 1906036 (2020).

  58. K. Konstas, S. J. Langford, and M. J. Latter, Int. J. Mol. Sci., 11, No. 6, 2453-2472 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. C. J. Bruns and J. F. Stoddart, The Nature of the Mechanical Bond: From Molecules to Machines, Wiley, Hoboken, New Jersey (2017).

    Google Scholar 

  60. E. R. Kay, D. A. Leigh, and F. Zerbetto, Angew. Chem. Int. Ed., 46, No. 1-2, 72-191 (2007).

    Article  CAS  Google Scholar 

  61. T. Felder and C. A. Schalley, Highlights in Bioorganic Chemistry: Methods and Applications, C. Schmuck and H. Wennemers (eds.), Wiley-VCH, Weinheim, Germany (2004), pp. 526-539.

    Chapter  Google Scholar 

  62. P. Liu, X. Shao, C. Chipot, and W. Cai, Chem. Sci., 7, No. 1, 457-462 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. F. G. Gatti, D. A. Leigh, S. A. Nepogodiev, et al., J. Am. Chem. Soc., 123, No. 25, 5983-5989 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. I. Murgu, J. M. Baumes, J. Eberhard, et al., J. Org. Chem., 76, No. 2, 688-691 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. J. Berna, M. Alajarin, J. S. Martinez-Espin, et al., Chem. Commun., 48, No. 45, 5677-5679 (2012).

    Article  CAS  Google Scholar 

  66. I. Ben Shir, S. Sasmal, T. Mejuch, et al., J. Org. Chem., 73, No. 22, 8772-8779 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. V. Bermudez, N. Capron, T. Gase, et al., Nature, 406, No. 6796, 608-611 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. X. Ma, Q. C. Wang, and H. Tian, Prog. Chem., 21, No. 1, 106-115 (2009).

    CAS  Google Scholar 

  69. V. Balzani, A. Credi, and M. Venturi, Chem. Soc. Rev., 38, No. 6, 1542-1550 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. X. Ma and H. Tian, Chem. Soc. Rev., 39, No. 1, 70-80 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. V. Blanco, D. A. Leigh, and V. Marcos, Chem. Soc. Rev., 44, No. 15, 5341-5370 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. A. W. Heard and S. M. Goldup, ACS Cent. Sci., 6, No. 2, 117-128 (2020).

    CAS  Google Scholar 

  73. P.-L. Anelli, N. Spencer, and J. F. Stoddart, J. Am. Chem. Soc., 113, No. 13, 5131-5133 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. A. Coskun, D. C. Friedman, H. Li, et al., J. Am. Chem. Soc., 131, No. 7, 2493-2495 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. S. Yu, N. D. McClenaghan, and J.-L. Pozzo, Photochem. Photobiol. Sci., 18, No. 9, 2102-2111 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. S. Chen, D. Su, C. Jia, et al., Chem., 8, No. 1, 243-252 (2022).

    Article  CAS  Google Scholar 

  77. D. H. Qu, Q. C. Wang, J. Ren, and H. Tian, Org. Lett., 6, No. 13, 2085-2088 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Q. C. Wang, D. H. Qu, J. Ren, et al., Angew. Chem. Int. Ed., 43, No. 20, 2661-2665 (2004).

    Article  CAS  Google Scholar 

  79. V. Serreli, C.-F. Lee, E. R. Kay, and D. A. Leigh, Nature, 445, No. 7127, 523-527 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. J. Berna, D. A. Leigh, M. Lubomska, et al., Nat. Mater., 4, No. 9, 704-710 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. T. Muraoka, K. Kinbara, Y. Kobayashi, and T. Aida, J. Am. Chem. Soc., 125, No. 19, 5612-5613 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Y. Norikane and N. Tamaoki, Org.Lett., 6, N15, 2595-2598 (2004).

  83. H. Sugimoto, T. Kimura, and S. Inoue, J. Am. Chem. Soc., 121, No. 10, 2325-2326 (1999).

    Article  CAS  Google Scholar 

  84. H. Gu, J. Chao, S.-J. Xiao, and N. C. Seeman, Nature, 465, No. 7295, 202-206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. H. Okamura, SPIE Newsroom (2007), DOI: https://doi.org/10.1117/2.1200701.0589.

  86. T. Kudernac, N. Ruangsupapichat, M. Parschau, et al., Nature, 479, No. 7372, 208-211 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. J. Mei, N. L. C. Leung, R. T. K. Kwok, et al., Chem. Rev., 115, No. 21, 11718-11940 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. S. Cao, J. Shao, H. Wu, et al., Nat. Commun., 12, Art. 2077 (2021).

  89. M. J. Barrell, A. G. Campana, M. von Delius, et al., Angew. Chem. Int. Ed., 50, No. 1, 285-290 (2011).

    Article  CAS  Google Scholar 

  90. A. V. Kulinich and A. A. Ishchenko, Russ. Chem. Rev., 78, No. 2, 141-164 (2009).

    Article  CAS  Google Scholar 

  91. M. Dekhtyar, W. Rettig, and W. Weigel, Chem. Phys., 344, No. 3, 237-250 (2008).

    Article  CAS  Google Scholar 

  92. Z. Pawlowska, A. Lietard, S. Aloïse, et al., Phys. Chem. Chem. Phys., 13, No. 29, 13185-13195 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. A. C. Benniston, Chem. Soc. Rev., 25, No. 6, 427-435 (1996).

    Article  CAS  Google Scholar 

  94. M. Von Delius and D. A. Leigh, Chem. Soc. Rev., 40, No. 7, 3656-3676 (2011).

    Article  CAS  Google Scholar 

  95. M. L. Dekhtyar, T. Ye. Korochkova, and V. M. Rozenbaum, Int. J. Quant. Chem., 110, No. 1, 67-76 (2010).

  96. M. L. Dekhtyar, V. M. Rozenbaum, and L. I. Trakhtenberg, Russ. J. Phys. Chem. A., 90, No. 7, 1484-1488 (2016).

    Article  CAS  Google Scholar 

  97. V. M. Rozenbaum, M. L. Dekhtyar, S. H. Lin, and L. I. Trakhtenberg, J. Chem. Phys., 145, No. 6, Art. 064110 (2016).

  98. M. L. Dekhtyar and V. M. Rozenbaum, J. Chem. Phys., 134, No. 4, Art. 044136.

  99. M. L. Dekhtyar, V. M. Rozenbaum, and L. I. Trakhtenberg, Theor. Exp. Chem., 55, No. 4, 232-239 (2019).

    Article  CAS  Google Scholar 

  100. V. M. Rozenbaum, T. Ye. Korochkova, A. A. Chernova, and M. L. Dekhtyar, Phys. Rev. E., 83, No. 5, Art. 051120 (2011).

  101. M. L. Dekhtyar and V. M. Rozenbaum, J. Chem. Phys., 137, No. 12, Art. 124306.

  102. M. L. Dekhtyar and V. M. Rozenbaum, MATCH Commun. Math. Comput. Chem., 72, No. 3, 609-626 (2014).

    Google Scholar 

  103. M. I. Ikim, M. L. Dekhtyar, V. M. Rozenbaum, et al. Russ. J. Phys. Chem. B., 14, No. 2, 332-335 (2020).

    Article  CAS  Google Scholar 

  104. V. M. Rozenbaum, M. L. Dekhtyar, and L. I. Trakhtenberg, Russ. J. Phys. Chem. A., 91, No. 10, 1951-1956 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Dekhtyar.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 58, No. 2, pp. 81-92, March-April, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dekhtyar, M.L. Brownian Photomotors Based on Organic Compounds: A Review. Theor Exp Chem 58, 90–104 (2022). https://doi.org/10.1007/s11237-022-09726-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09726-5

Keywords

Navigation