Skip to main content
Log in

Influence of Cooperative Interactions on the Spin Crossover Phenomenon in Iron(II) Complexes: A Review

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The theoretical principles of a spin transition phenomenon in pseudo-octahedral iron(II) complexes are summarized. The intrinsic transfer of electrons between d-orbitals of a central ion under the action of external factors and the corresponding changes in the structural, spectral, and magnetic characteristics of matter are considered. Cooperative interactions that lead to the appearance of hysteresis of physical properties have been studied in detail. Perspective areas of practical applications of compounds with spin transitions have been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam (1984).

    Google Scholar 

  2. M. A. Halcrow, Spin-Crossover Materials: Properties and Applications,M. A. Halcrow (ed.), John Wiley&Sons, Ltd (2013), pp. 147-169.

  3. P. Gutlich, A. Hauser, and H. Spiering, Angew. Chem. Int. Ed., 33, No. 20, 2024-2054 (1994).

    Article  Google Scholar 

  4. P. Guionneau, M. Marchivie, G. Bravic, et al., Top. Curr. Chem., 234, 97-128 (2004).

    Article  CAS  Google Scholar 

  5. A. Hauser, Top. Curr. Chem., 233, 49-58 (2004).

    Article  CAS  Google Scholar 

  6. M. Sorai and S. Seki, J. Phys. Chem. Solids, 35, No. 4, 555-570 (1974).

    Article  CAS  Google Scholar 

  7. M. Sorai, J. Ensling, and P. Gutlich, Chem. Phys., 18, Nos. 1-2, 199-209 (1976).

    Article  CAS  Google Scholar 

  8. E. Konig, Struct. Bond, 76, 51-152 (1991).

    Article  Google Scholar 

  9. S. Decurtins, P. Gutlich, C. P. Kohler, et al., Chem. Phys. Lett., 105, No. 1, 1-4 (1984).

    Article  CAS  Google Scholar 

  10. A. Hauser, Coord. Chem. Rev., 111, 275-290 (1991).

    Article  CAS  Google Scholar 

  11. A. Hauser, Chem. Phys. Lett., 124, No. 6, 543-548 (1986).

    Article  CAS  Google Scholar 

  12. A. Hauser, A. Vef, and P. Adler, J. Chem. Phys., 95, No. 12, 8710-8717 (1991).

    Article  CAS  Google Scholar 

  13. R. Bertoni, M. Lorenc, H. Cailleau, et al., Nat. Mater., 15, No. 6, 606-610 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. R. Bertoni, M. Lorenc, T. Graber, et al., CrystEngComm., 18, No. 38, 7269-7275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Lorenc, J. Hebert, N. Moisan, et al., Phys. Rev. Lett., 103, No. 2, 028301 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. E. Collet and P. Guionneau, C. R. Chimie., 21, No. 12, 1133-1151 (2018).

    Article  CAS  Google Scholar 

  17. Y. Jiang, L. C. Liu, H. M. Mueller-Werkmeister, et al., Angew. Chem. Int. Ed., 56, No. 25, 7130-7134 (2017).

    Article  CAS  Google Scholar 

  18. P. Gutlich, Y. Garcia, and H. A. Goodwin, Chem. Soc. Rev., 29, No. 6, 419-427 (2000).

    Article  CAS  Google Scholar 

  19. V. Ksenofontov, A. B. Gaspar, and P. Gutlich, Top. Curr. Chem., 235, 23-64 (2004).

    Article  CAS  Google Scholar 

  20. A. H. Ewald, I. G. Ross, A. H. White, and R. L. Martin, Proc. R. Soc. Lond. A., 280, No. 138, 235-257 (1964).

    CAS  Google Scholar 

  21. H. Drickamer, Angew. Chem. Int. Ed., 13, No. 1, 39-47 (1974).

    Article  Google Scholar 

  22. C. P. Kghler, R. Jakobi, E. Meissner, et al., J. Phys. Chem. Solids, 51, No. 3, 239-247 (1990).

    Article  Google Scholar 

  23. N. Paradis, F. Le Gac, P. Guionneau, et al., Magnetochemistry, 2, No. 1, 15 (2016).

    Article  CAS  Google Scholar 

  24. Y. Garcia, P. J. van Koningsbruggen, R. Lapouyade, et al., Chem. Mater., 10, No. 9, 2426-2433 (1998).

    Article  CAS  Google Scholar 

  25. T. Granier, B. Gallois, J. Gaultier, et al., Inorg. Chem., 32, No. 23, 5305-5312 (1993).

    Article  CAS  Google Scholar 

  26. V. Ksenofontov, G. Levchenko, H. Spiering, et al., Chem. Phys. Lett., 294, No. 6, 545-553 (1998).

    Article  CAS  Google Scholar 

  27. H. Spiering, E. Meissner, H. Koppen, et al., Chem. Phys., 68, Nos. 1-2, 65-71 (1982).

    Article  CAS  Google Scholar 

  28. N. Willenbacher and H. Spiering, J. Phys. C., 21, 1423-1439 (1988).

    Article  Google Scholar 

  29. I. Sanner, E. Meissner, H. Koppen, et al., Chem.Phys., 86, Nos. 1-2, 227-233 (1984).

    Article  CAS  Google Scholar 

  30. R. Hinek, H. Spiering, P. Gutlich, and A. Hauser, Chem. Eur. J., 2, No. 11, 1435-1439 (1996).

    Article  CAS  Google Scholar 

  31. A. Hauser, P. Gutlich, and H. Spiering, Inorg. Chem., 25, No. 23, 4245-4248 (1986).

    Article  CAS  Google Scholar 

  32. M. A. Halcrow, Coord. Chem. Rev., 253, Nos. 21-22, 2493-2514 (2009).

    Article  CAS  Google Scholar 

  33. M. A. Halcrow, New J. Chem., 38, No. 5, 1868-1882 (2014).

    Article  CAS  Google Scholar 

  34. G. A. Craig, O. Roubeau, and G. Aromu, Coord. Chem. Rev., 269, 13-31 (2014).

    Article  CAS  Google Scholar 

  35. T. Kuroda-Sowa, Z. Yu, Y. Senzaki, et al., Chem. Lett., 37, No. 12, 1216-1217 (2008).

    Article  CAS  Google Scholar 

  36. Z. Yu, T. Kuroda-Sowa, H. Kume, et al., Bull. Chem. Soc. Jpn., 82, No. 3, 333-337 (2009).

    Article  CAS  Google Scholar 

  37. R. Boca, M. Bora, L. Dlhan, et al., Inorg. Chem., 40, No. 13, 3025-3033 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. M. A. Halcrow, Chem. Lett., 43, No. 8, 1178-1188 (2014).

    Article  CAS  Google Scholar 

  39. P. Guionneau, M. Marchivie, and G. Chastanet, Chem. Eur. J., 27, No. 5, 1483-1486 (2020).

    Article  PubMed  CAS  Google Scholar 

  40. P. Guionneau, Dalton Trans., 43, No. 2, 382-393 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. M. A. Halcrow, Chem. Soc. Rev., 40, No. 7, 4119-4142 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. B. Weber, W. Bauer, and J. Obel, Angew. Chem. Int. Ed., 47, No. 52, 10098-10101.

  43. D. Aguila, P. Dechambenoit, M. Rouzieres, et al., Chem. Commun., 53, No. 84 11588-11591 (2017).

    Article  CAS  Google Scholar 

  44. M. L. Boillot, S. Pillet, A. Tissot, et al., Inorg. Chem., 48, No. 11, 4729-4736.

  45. W. Guo, N. Daro, S. Pillet, et al., Chem. Eur. J., 26, No. 57, 12927-12930 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. O. Sato, Nat. Chem., 8, No. 7, 644-656 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. C.-F. Sheu, C.-H. Shih, K. Sugimoto, et al., Chem. Commun., 48, No. 46, 5715-5717 (2012).

    Article  CAS  Google Scholar 

  48. S. Iglesias, A. Gamonal, A. Abudulimu, et al., Chem. Eur. J., 26, No. 47, 10801-10810 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. A. Grosjean, P. Negrier, P. Bordet, et al., Eur. J. Inorg. Chem., 2013, Nos. 5-6, 796-802 (2013).

    Article  CAS  Google Scholar 

  50. M. D. Manrique-Juarez, S. Rat, L. Salmon, et al., Coord. Chem. Rev., 308, 395-408 (2016).

    Article  CAS  Google Scholar 

  51. P. Guionneau, F. Le Gac, A. Kaiba, et al., Chem. Commun., No. 36, 3723-3725 (2007).

    Article  CAS  Google Scholar 

  52. M. Grzywa, R. Rob-Ohlenroth, C. Muschielok, et al., Inorg. Chem., 59, No. 15, 10501-10511 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. P. Guionneau and E. Collet, Spin-Crossover Materials: Properties and Applications,M. A. Halcrow (ed.), John Wiley & Sons, Ltd, (2013), pp 507-526.

  54. V. Niel, M. C. Mucoz, A. B. Gaspar, et al., Chem. Eur. J., 8, No. 11, 2446-2453 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Y. Miyazaki, T. Nakamoto, S. Ikeuchi, et al., J. Phys. Chem. B., 111, No. 43, 12508-12517 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. F. Varret, A. Slimani, K. Boukheddaden, et al., New J. Chem., 35, No. 10, 2333-2340 (2011).

    Article  CAS  Google Scholar 

  57. P. Guionneau, S. Lakhloufi, M.-H. Lemee-Cailleau, et al., Chem. Phys. Lett., 542, 52-55.

  58. A. Grosjean, N. Daro, S. Pechev, et al., Eur. J. Inorg. Chem., 2016, Nos. 13-14, 1961-1966 (2016).

    Article  CAS  Google Scholar 

  59. K. Senthil Kumar, B. Heinrich, S. Vela, et al., Dalton Trans., 48, No. 12, 3825-3830 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. A. I. Vicente, A. Joseph, L. P. Ferreira, et al., Chem. Sci., 7, No. 7, 4251-4258 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. K. Ridier, A.-C. Bas, Y. Zhang, et al., Nat. Commun., 11, Art. 3611 (2020).

  62. N. Pittala, F. Thetiot, S. Triki, et al., Chem. Mater., 29, No. 2, 490-494 (2016).

    Article  CAS  Google Scholar 

  63. A. Grosjean, N. Daro, S. Pechev, et al., Eur. J. Inorg. Chem., 2018, Nos. 3-4, 429-434 (2018).

    Article  CAS  Google Scholar 

  64. M. Sorai, Bull. Chem. Soc. Jpn., 74, No. 12, 2223-2253 (2001).

    Article  CAS  Google Scholar 

  65. C. N. R. Rao and K. J. Rao, Phase transitions in solids, McGraw-Hill, New York (1978).

    Google Scholar 

  66. http://portal.isiknowledge.com

  67. M. Shatruk, H. Phan, B. A. Chrisostomo, and A. Suleimenova, Coord. Chem. Rev., 289-290, 62-73 (2015).

  68. E. Tailleur, M. Marchivie, N. Daro, et al., Chem. Commun., 53, No. 35, 4763-4766 (2017).

    Article  CAS  Google Scholar 

  69. N. Ortega-Villar, M. Mucoz, and J. Real, Magnetochemistry, 2, No. 1, 16 (2016).

    Article  CAS  Google Scholar 

  70. L. Wiehl, G. Kiel, C. P. Kohler, et al., Inorg. Chem., 25, No. 10, 1565-1571 (1986).

    Article  CAS  Google Scholar 

  71. V. Petrouleas and J. P. Tuchagues, Chem. Phys. Lett., 137, No. 1, 21-25 (1987).

    Article  CAS  Google Scholar 

  72. B. Gallois, J. A. Real, C. Hauw, and J. Zarembowitch, Inorg. Chem., 29, No. 6, 1152-1158 (1990).

    Article  CAS  Google Scholar 

  73. P. Gutlich and H. A. Goodwin, Top. Curr. Chem., 233, 1-47 (2004).

    Article  CAS  Google Scholar 

  74. A. J. Conti, R. K. Chadha, K. M. Sena, et al., Inorg. Chem., 32, No. 12, 2670-2680 (1993).

    Article  CAS  Google Scholar 

  75. E. Kgnig, G. Ritter, S. K. Kulshreshtha, et al., Inorg. Chem., 23, No. 9, 1241-1246 (1984).

    Article  Google Scholar 

  76. C. C. Wu, J. Jung, P. K. Gantzel, et al., Inorg. Chem., 36, No. 23, 5339-5347 (1997).

    Article  CAS  Google Scholar 

  77. J. Kusz, P. Gutlich, and H. Spiering, Top. Curr. Chem., 234, 129-153 (2004).

    Article  CAS  Google Scholar 

  78. P. Guionneau, J. F. Letard, D. S. Yufit, et al., J. Mater. Chem., 9, No. 4, 985-994 (1999).

    Article  CAS  Google Scholar 

  79. S. Hayami, Y. Shigeyoshi, M. Akita, et al., Angew. Chem. Int. Ed., 44, No. 31, 4899-4903 (2005).

    Article  CAS  Google Scholar 

  80. E. Tailleur, M. Marchivie, P. Negrier, et al., CrystEngComm., 21, No. 41, 6246-6251 (2019).

    Article  CAS  Google Scholar 

  81. D. Rosario-Amorin, P. Dechambenoit, A. Bentaleb, et al., J. Am. Chem. Soc., 140, No. 1, 98-101 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. M. Mikami, M. Konno, and Y. Saito, Chem. Phys. Lett., 63, No. 3, 566-569 (1979).

    Article  CAS  Google Scholar 

  83. D. Chernyshov, M. Hostettler, K. W. Tornroos, and H. B Burgi, Angew. Chem. Int. Ed., 42, No. 32, 3825-3830 (2003).

    Article  CAS  Google Scholar 

  84. D. Chernyshov, N. Klinduhov, and K. W. Tornroos, Phys. Rev. B., 76, No. 1, 014406 (2007).

    Article  CAS  Google Scholar 

  85. J. Fleisch, P. Gutlich, K. M. Hasselbach, and W. Muller, Inorg. Chem., 15, No. 4, 958-961 (1976).

    Article  CAS  Google Scholar 

  86. J. M. Holland, J. A. McAllister, Z. B. Lu, et al, Chem. Commun., 2001, No. 6, 577-578 (2001).

    Article  Google Scholar 

  87. G. S. Matouzenko, A. Bousseksou, S. A. Borshch, et al., Inorg. Chem., 43, No. 1, 227-236 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. V. A. Money, J. Elhaik, I. R. Evans, et al., Dalton Trans., No. 1, 65-69 (2004).

  89. E. Konig, G. Ritter, S. K. Kulshreshtha, and S. M. Nelson, Inorg. Chem., 21, No. 8, 3022-3029 (1982).

    Article  Google Scholar 

  90. G. S. Matouzenko, D. Luneau, G. Molnar, et al., Eur. J. Inorg. Chem., 2006, No. 13, 2671-2682 (2006).

    Article  CAS  Google Scholar 

  91. S. J. Blundell and F. L. Pratt, J. Phys. Condens. Matter., 16, R711-R828 (2004).

    Google Scholar 

  92. D. B. Amabilino and J. Veciana, Magnetism: Molecules to Materials II: Molecule-Based Materials, J. S. Miller and M. Drillon (eds.), Wiley-VCH, Weinheim (2002), pp.1-51.

  93. H. Iwamura and K. Inoue, Magnetism: Molecules to Materials II: Molecule-Based Materials, J. S. Miller and M. Drillon (eds.), Wiley-VCH, Weinheim (2002), pp. 61-108.

  94. P. M. Lahti, Carbon-Based Magnetism, T. Makarova and F. Palacio (eds.), Elsevier, Amsterdam (2006), 23-53.

  95. A. Dragulescu-Andrasi, A. S. Filatov, R. T. Oakley, et al., J. Am. Chem. Soc., 141, No. 45, 17989-17994 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. W. Fujita and K. Awaga, Science, 286, 261-262 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. M. E. Itkis, X. Chi, A. W. Cordes, and R. C. Haddon, Science, 296, 1443-1445 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. S.-i. Ohkoshi, T. Matsuda, H. Tokoro, and K. Hashimoto, Chem. Mater., 17, No. 1, 81-84 (2005).

  99. A. Escuer, R. Vicente, J. Ribas, and X. Solans, Inorg. Chem., 34, No. 7, 1793-1798 (1995).

    Article  CAS  Google Scholar 

  100. F. A. Mautner, R. Cortes, L. Lezama, and T. Rojo, Angew. Chem. Int. Ed., 35, No. 1, 78-80 (1996).

    Article  Google Scholar 

  101. M. Monfort, J. Ribas, X. Solans, and M. Font-Bardia, Inorg. Chem., 35, No. 26, 7633-7638 (1996).

    Article  CAS  Google Scholar 

  102. G. Leibeling, S. Demeshko, S. Dechert, and F. Meyer, Angew. Chem. Int. Ed., 44, 7111-7114 (2005).

    Article  CAS  Google Scholar 

  103. O. Jeannin, R. Clerac, and M. Fourmigue, J. Am. Chem. Soc., 128, No. 45, 14649-14656 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. O. Jeannin, R. Clerac, and M. Fourmigue, Cryst. Eng. Commun., 9, 488-495 (2007).

    Article  CAS  Google Scholar 

  105. A. J. Banister, N. Bricklebank, I. Lavender, et al., Angew. Chem. Int. Ed., 35, No. 21, 2533-2535 (1996).

    Article  CAS  Google Scholar 

  106. T. M. Barclay, A. W. Cordes, N. A. George, et al., J. Am. Chem. Soc., 120, 352-360 (1998).

    Article  CAS  Google Scholar 

  107. X. Ren, Q. Meng, and Y. Song, Inorg. Chem., 41, 5931-5933 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. X. Ren, Q. Meng, and Y. Song, Inorg. Chem., 41, 5686-5692 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. J. L. Brusso, O. P. Clements, R. C. Haddon, et al., J. Am. Chem. Soc., 126, 14692-14693 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. J. L. Brusso, O. P. Clements, R. C. Haddon, et al., J. Am. Chem. Soc., 126, 8256-8265 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. X. M. Ren, H. Okudera, R. K. Kremer, et al., Inorg. Chem., 43, 2569-2576 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. A. Alberola, R. J. Collis, S. M. Humphrey, et al., Inorg. Chem., 45, 1903-1905 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. W. Fujita, K. Awaga, R. Kondo, and S. Kagoshima, J. Am. Chem. Soc., 128, 6016-6017 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. X. M. Ren, S. Nishihara, T. Akutagawa, et al., Inorg. Chem., 45, 2229-2234 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. J. Tao, R.-J. Wei, R.-B. Huang, and L-S. Zheng, Chem. Soc. Rev., 41, No. 2, 703-737 (2012).

  116. A. Ozarowski, B. R. McGarvey, A. B. Sarkar, and J. E. Drake, Inorg. Chem., 27, No. 14, 628-635 (1988).

    Article  CAS  Google Scholar 

  117. G. S. Matouzenko, A. Bousseksou, S. Lecocq, et al., Inorg. Chem., 36, No. 25, 5869-5879 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. M. Marchivie, P. Guionneau, J. F. Letard, and D. Chasseau, Acta Crystallogr. B., 59, 479-486 (2003).

    Article  PubMed  Google Scholar 

  119. A. Galet, A. B. Gaspar, M. C. Mucoz, et al., Inorg. Chem., 45, No. 24, 9670-9679 (2006)

    Article  CAS  PubMed  Google Scholar 

  120. N. Moliner, M. C. Mucoz, S. Letard, et al., Inorg. Chim. Acta., 291, Nos 1-2, 279-288 (1999).

    Article  CAS  Google Scholar 

  121. A. B. Gaspar, M. C. Mucoz, N. Moliner, et al., Monatsh. Chem., 134, No. 2, 285-294 (2003).

    Article  CAS  Google Scholar 

  122. D. L. Reger, J. R. Gardinier, M. D. Smith, et al., Inorg. Chem., 44, No 6, 1852-1866 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. L. Salmon, B. Donnadieu, A. Bousseksou, and J. P. Tuchagues, C. R. Acad. Sci. IIC., 2, Nos. 5-6, 305-309 (1999).

    CAS  Google Scholar 

  124. L. Salmon, A. Bousseksou, B. Donnadieu, and J. P. Tuchagues, Inorg. Chem., 44, No. 6, 1763-1773 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. J. Krober, R. Audiure, R. Claude, et al., Chem. Mater., 6, No. 8, 1404-1412 (1994).

    Article  Google Scholar 

  126. F.-J. Valverde-Mucoz, M. Seredyuk, and M. C. Mucoz, Angew. Chem. Int. Ed., 59, No. 42, 18632-18638 (2020).

    Article  CAS  Google Scholar 

  127. T. Romero-Morcillo, M. Seredyuk, M. C. Mucoz, and J. A. Real, Angew. Chem. Int. Ed., 54, No. 49, 14777-14781 (2015).

    Article  CAS  Google Scholar 

  128. A. Bousseksou, C. Vieu, J.-F. Letard, et al., Molecular Memory and Method for Making Same, Patent EU 1430552, Publ. 2016.

  129. J. F. Letard, P. Guionneau, and L. Goux-Capes, Top. Curr. Chem., 235, 221-249 (2004).

    Article  CAS  Google Scholar 

  130. G. Molnar, S. Rat, L. Salmon, et al., Adv. Mater., 30, 17003862 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Seredyuk.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seredyuk, M.L., Znovjyak, K.O. & Fritsky, I.O. Influence of Cooperative Interactions on the Spin Crossover Phenomenon in Iron(II) Complexes: A Review. Theor Exp Chem 58, 75–89 (2022). https://doi.org/10.1007/s11237-022-09725-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09725-6

Keywords

Navigation