Skip to main content
Log in

Mono- and Few-Layer Nitrogen-Containing Graphenes as Sensitive Layers of Electrochemical Sensors for Selective Determination of Dopamine and Uric Acid in the Presence of Ascorbic Acid

  • Published:
Theoretical and Experimental Chemistry Aims and scope

A comparative study of electrochemical properties of mono- and few-layer samples of nitrogen-doped graphene as nanosized sensor materials for the qualitative and quantitative determination of dopamine and uric acid has been performed. It is found that the few-layer graphene (NGr(f)) is characterized by high sensibility to dopamine, while monolayer one (NGr(m)) is characterized by high sensibility to uric acid in presence of considerable concentrations of ascorbic acid. XPS results show that the nitrogen content is 8.3 at.% in NGr(f) and 6.2 at.% in NGr(m). The analysis of Raman spectra allows to establish, that NGr(f) and NGr(m) have a defective structure. NGr(f) is characterized mainly by edge defects, while NGr(m) is characterized by vacancies, what obviously predetermines the differences in electrochemical properties of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. J. Wanga, X. Mub, M. Sun, and T. Mu, Appl. Mater. Today, 16, 1-20 (2019).

    Article  Google Scholar 

  2. R. Kumar, S. Sahoo, E. Joanni, et al., Mater. Today, 39, 47-65 (2020).

    Article  CAS  Google Scholar 

  3. F. Catania, E. Marras, M. Giorcelli, et al., Appl. Sci., 21, No. 2, 614 (2021).

    Article  Google Scholar 

  4. S. Ullah, Q. Shi, J. Zhou, et al., Adv. Mater. Interfaces, 7, No. 24, 2000999 (2020).

    Article  CAS  Google Scholar 

  5. A. G. Olabi, M. A. Abdelkareem, T. Wilberforce, and E. T. Sayed, Renew. Sustain. Energy Rev., 135, 110026 (2021).

    Article  CAS  Google Scholar 

  6. A. T. Lawal, Biosens. Bioelectron., 141, 111384 (2019).

    Article  CAS  Google Scholar 

  7. X. Sun, C. Huang, L. Wang, et al., Adv. Mater., 33, No. 6, 2001105 (2021).

    Article  CAS  Google Scholar 

  8. Z. Chen, X. An, L. Dai, and Y. Xu, Nano Energy, 73, 104762 (2020).

    Article  CAS  Google Scholar 

  9. W. Yu, L. Sisi, Y. Haiyan, and L. Jie, RSC Adv., 10, No. 26, 15328-15345 (2020).

    Article  CAS  Google Scholar 

  10. R. Khan, R. Nakagawa, B. Campeon, and Y. Nishina, ACS Appl. Mater. Interfaces, 12, No. 11, 12736-12742 (2020).

    Article  CAS  Google Scholar 

  11. O. Yu. Posudievsky, A. S. Kondratyuk, O. A. Kozarenko, et al., Electrochim. Acta., 399, 139410 (2021).

    Article  CAS  Google Scholar 

  12. O. Yu. Posudievsky, A. S. Kondratyuk, O. A. Kozarenko, et al., Carbon, 152, 274-283 (2019).

    Article  CAS  Google Scholar 

  13. O. Yu. Posudievsky, O. A. Kozarenko, A. S. Kondratyuk, et al., Appl. Surf. Sci., 580, 152279 (2022).

    Article  CAS  Google Scholar 

  14. L. Clara, G. D. Giovanni, and S. Galati, J. Neurosci. Methods, 310, 75-88 (2018).

    Article  Google Scholar 

  15. N. Smirnoff, Free Radic. Biol. Med., 122, 116-129 (2018).

    Article  CAS  Google Scholar 

  16. N. Charoenngam, B. Ponvilawan, and P. Ungpraser, Mod. Rheumatol., 30, No. 2, 385-390 (2020).

    Article  CAS  Google Scholar 

  17. B. J. Matsoso, B. K. Mutuma, C. Billing, et al., Electrochim. Acta., 286, 29-38 (2018).

    Article  CAS  Google Scholar 

  18. F. Foroughi, M. Rahsepar, and H. Kim, J. Electroanal. Chem., 827, 34-41 (2018).

    Article  CAS  Google Scholar 

  19. S. P. Sasikala, K. Huang, B. Giroire, et al., ACS Appl. Mater. Interfaces, 8, 30964-30971 (2016).

    Article  CAS  Google Scholar 

  20. C. He, Z. Li, M. Cai, et al., J. Mater. Chem. A., 1, 1401-1406 (2013).

    Article  CAS  Google Scholar 

  21. K. Artyushkova, J. Vac. Sci. Technol. A., 38, No. 3, 031002 (2020).

    Article  CAS  Google Scholar 

  22. G. T. Qin, L. Ding, M. Zeng, et al., J. Electroanal. Chem., 866, 114176 (2020).

    Article  CAS  Google Scholar 

  23. Y. Bian, H. Wang, J. Hu, et al., Carbon, 162, 66-73 (2020).

    Article  CAS  Google Scholar 

  24. A. Kaniyoor and S. Ramaprabhu, AIP Advances, 2, 032183 (2012).

    Article  Google Scholar 

  25. C. Cong and T. Yu, Phys. Rev. B., 89, 235430 (2014).

    Article  Google Scholar 

  26. Y. Celik, E. Flahaut, and E. Suvaci, FlatChem., 1, 74-88 (2017).

    Article  CAS  Google Scholar 

  27. A. Eckmann, A. Felten, A. Mishchenko, et al., Nano Lett., 12, No. 8, 3925-3930 (2012).

    Article  CAS  Google Scholar 

  28. A. C. R. Fernandez and N. J. Castellani, Surf. Sci., 693, 121546 (2020).

    Article  CAS  Google Scholar 

  29. S. Yadav, Z. Zhu, and C. V. Singh, Int. J. Hydrog. Energy, 39, No. 10, 4981-4995 (2014).

    Article  CAS  Google Scholar 

  30. C. Zhai, B. Hou, P. Peng, et al., J. Mol. Liq., 249, 9-15 (2018).

    Article  CAS  Google Scholar 

  31. B. Li, X. Ying, S. Su, and D. Su, Phys. Chem. Chem. Phys., 17, 6691-6694 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Kozarenko.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 58, No. 2, pp. 96-103, March-April, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozarenko, O.A., Kondratyuk, A.S., Dyadyun, V.S. et al. Mono- and Few-Layer Nitrogen-Containing Graphenes as Sensitive Layers of Electrochemical Sensors for Selective Determination of Dopamine and Uric Acid in the Presence of Ascorbic Acid. Theor Exp Chem 58, 109–117 (2022). https://doi.org/10.1007/s11237-022-09728-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09728-3

Keywords

Navigation