Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Soft materials evolution and revolution

Soft matter has evolved considerably since it became recognized as a unified field. This has been driven by new experimental, numerical and theoretical methods to probe soft matter, and by new ways of formulating soft materials. These advances have driven a revolution in knowledge and expansion into biological and active matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of advances in soft matter.

References

  1. Leunissen, M. E. et al. Nature 437, 235–240 (2005).

    Article  CAS  Google Scholar 

  2. Schall, P., Weize, D. A. & Spaepen, F. Science 318, 1895–1899 (2007).

    Article  CAS  Google Scholar 

  3. Cerbino, R. & Trappe, V. Phys. Rev. Lett. 100, 188102 (2008).

    Article  Google Scholar 

  4. Mackintosh, F. & Schmidt, C. Curr. Opin. Colloid Interface Sci. 4, 300–307 (1999).

    Article  CAS  Google Scholar 

  5. Squires, T. M. & Mason, T. G. Annu. Rev. Fluid Mech. 42, 413–438 (2010).

    Article  Google Scholar 

  6. Valentine, M. T. et al. Phys. Rev. E 64, 061506 (2001).

    Article  CAS  Google Scholar 

  7. Pawar, A. B. & Kretzschmar, I. Macromol. Rapid Commun. 31, 150–168 (2010).

    Article  CAS  Google Scholar 

  8. Schoenholz, S. S. et al. Nat. Phys. 12, 469–471 (2016).

    Article  CAS  Google Scholar 

  9. Clint, J. H. Surfactant Aggregation (Springer Science and Business Media, 2012).

  10. Mai, Y. & Eisenberg, A. Chem. Soc. Rev. 41, 5969–5985 (2012).

    Article  CAS  Google Scholar 

  11. Seeman, N. C. & Sleiman, H. F. Nat. Rev. Mater. 3, 17068 (2017).

    Article  Google Scholar 

  12. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Science 347, 1260901 (2015).

    Article  Google Scholar 

  13. Biffi, S. et al. Proc. Natl Acad. Sci. USA 110, 15633–15637 (2013).

    Article  CAS  Google Scholar 

  14. He, M. et al. Nature 585, 524–529 (2020).

    Article  CAS  Google Scholar 

  15. Günther, A. & Jensen, K. F. Lab Chip 6, 1487–1503 (2006).

    Article  Google Scholar 

  16. Dendukuri, D. & Doyle, P. S. Adv. Mater. 21, 4071–4086 (2009).

    Article  CAS  Google Scholar 

  17. Duncanson, W. J. et al. Lab Chip 12, 2135–2145 (2012).

    Article  CAS  Google Scholar 

  18. Smay, J. E. et al. Langmuir 18, 5429–5437 (2002).

    Article  CAS  Google Scholar 

  19. Mart, R. J. et al. Soft Matter 2, 822–835 (2006).

    Article  CAS  Google Scholar 

  20. Lee, J. B. et al. Nat. Nanotechnol. 7, 816–820 (2012).

    Article  CAS  Google Scholar 

  21. Gong, J. P. et al. Adv. Mater. 15, 1155–1158 (2003).

    Article  CAS  Google Scholar 

  22. Sperling, L. H. Interpenetrating Polymer Networks and Related Materials (Springer Science and Business Media, 2012).

  23. Sun, X. Nature 489, 133–136 (2012).

    Article  CAS  Google Scholar 

  24. Bernal, J. & Mason, J. Nature 188, 910–911 (1960).

    Article  Google Scholar 

  25. Donev, A. et al. Science 303, 990–993 (2004).

    Article  CAS  Google Scholar 

  26. Torquato, S. Phys. Rep. 745, 1–95 (2018).

    Article  CAS  Google Scholar 

  27. Jaeger, H. M., Nagel, S. R. & Behringer, R. P. Rev. Modern Phys. 68, 1259 (1996).

    Article  Google Scholar 

  28. Liu, A. J. & Nagel, S. R. Annu. Rev. Condens. Matter Phys. 1, 347–369 (2010).

    Article  Google Scholar 

  29. Cipelletti, L. & Ramos, L. Curr. Opin. Colloid Interface Sci. 7, 228–234 (2002).

    Article  CAS  Google Scholar 

  30. Sanchez, T. et al. Nature 491, 431–434 (2012).

    Article  CAS  Google Scholar 

  31. Keber, F. C. et al. Science 345, 1135–1139 (2014).

    Article  CAS  Google Scholar 

  32. Cates, M. E. & Tailleur, J. Annu. Rev. Condens. Matter Phys. 6, 219–244 (2015).

    Article  CAS  Google Scholar 

  33. Fabry, B. et al. Phys. Rev. Lett. 87, 148102 (2001).

    Article  CAS  Google Scholar 

  34. Sollich, P. et al. Phys. Rev. Lett. 78, 2020 (1997).

    Article  CAS  Google Scholar 

  35. Wang, J. H.-C. & Thampatty, B. P. Biomech. Model Mechanobiol. 5, 1–16 (2006).

    Article  CAS  Google Scholar 

  36. Brangwynne, C. P. et al. Science 324, 1729–1732 (2009).

    Article  CAS  Google Scholar 

  37. Shin, Y. & Brangwynne, C. P. Science 357, eaaf4382 (2017).

  38. Lekkerkerker, H. N. & Tuinier, R. Colloids and the Depletion Interaction 57–108 (Springer, 2011).

  39. Witten, T. A. Jr & Sander, L. M. Phys. Rev. Lett. 47, 1400 (1981).

    Article  CAS  Google Scholar 

  40. Zaccarelli, E. J. Phys. Condens. Matter 19, 323101 (2007).

    Article  Google Scholar 

  41. D’addio, S. M. & Prud’homme, R. K. Drug Deliv. Rev. 63, 417–426 (2011).

    Article  Google Scholar 

  42. Hou, X. et al. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  Google Scholar 

  43. Horn, D. & Rieger, J. Angew. Chem. Int. Ed. 40, 4330–4361 (2001).

    Article  CAS  Google Scholar 

  44. Klein, A. M. et al. Cell 161, 1187–1201 (2015).

    Article  CAS  Google Scholar 

  45. Coussot, P. J. Nonnewton. Fluid Mech. 211, 31–49 (2014).

    Article  CAS  Google Scholar 

  46. Wagner, N. J. & Brady, J. F. Phys. Today 62, 27–32 (2009).

    Article  CAS  Google Scholar 

  47. Smetana, S. et al. Int. J. Life Cycle Assess. 20, 1254–12567 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Weitz.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Materials thanks Jean-Francois Joanny and Francesco Sciortino for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weitz, D.A. Soft materials evolution and revolution. Nat. Mater. 21, 986–988 (2022). https://doi.org/10.1038/s41563-022-01356-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01356-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing