Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 25, 2022

Compact quadband two-port antenna with metamaterial cell-inspired decoupling parasitic element for mobile wireless applications

  • Pierre Moukala Mpele ORCID logo EMAIL logo , Franck Moukanda Mbango ORCID logo , Dominic B. O. Konditi ORCID logo , Ce Lakpo Bamy ORCID logo and Felix Urimubenshi ORCID logo
From the journal Frequenz

Abstract

In this paper, a quadband MIMO diamond-shaped antenna with two highly isolated elements is proposed and discussed. A novel metamaterial cell-inspired decoupling parasitic structure is deployed between the two antenna elements to achieve high isolation greater than 20 dB in the frequency bands of interest. Moreover, the design adopts a defected ground structure and open-ended multiple diamond-shaped branches for multiband characteristics, enabling the proposed MIMO to cover several modern wireless applications. The performance metrics of the proposed MIMO antenna are validated by evaluating various diversity parameters such as envelope correlation coefficient (ECC), diversity gain (DG), total active reflection coefficient (TARC), and channel capacity loss (CCL). This antenna is fabricated on an FR4 substrate with a compact size of 12 × 30 × 1.524 mm (0.082λ0 × 0.204λ0 × 0.001λ0, λ0 is the wavelength at 2.04 GHz). With the edge-to-edge separation distance of 0.053λ0 between the antenna elements, its prototype is experimentally measured using a two-port Rohde & Schwarz ZVA50 Vector Network Analyzer. The port-to-port isolation is about −20.87 dB, −23 dB, −25.93 dB, and −25.22 dB for 2.3 GHz, 3.18 GHz, 4.08 GHz, and 5.42 GHz frequency bands, respectively. Also, the proposed MIMO antenna exhibits good diversity performances with the ECC < 0.005, DG > 9.99, and TARC<−10 dB making it an outstanding candidate covering 4G/LTE, 5G NR sub-6 GHz n40/n41/n77/n78, Wi-Fi, WiMAX, ISM, WBAN, Bluetooth, MBAN, WiBro, C-V2X, and UWB applications.


Corresponding author: Pierre Moukala Mpele, Department of Electrical Engineering, Pan African University Institute for Basic Science Technology and Innovation, Nairobi, Kenya; and National School of Polytechnic Studies, Electrical and Electronics Engineering Laboratory, Marien Ngouabi University, B. P 69, Brazzaville, Republic of the Congo, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflict of interest.

Appendix: Matlab code for metamaterial parameters retrieval

References

[1] Y. Dou, Z. Chen, J. Bai, Q. Cai, and G. Liu, “Two-port CPW-fed dual-band MIMO antenna for IEEE 802.11 a/b/g applications,” Int. J. Antenn. Propag., vol. 2021, pp. 1–8, 2021, https://doi.org/10.1155/2021/5572887.Search in Google Scholar

[2] H. Aliakbari and B. K. Lau, “Low-profile two-port MIMO terminal antenna for low LTE bands with wideband multimodal excitation,” IEEE Open J. Antenn. Propag., vol. 1, no. June, pp. 368–378, 2020, https://doi.org/10.1109/ojap.2020.3010916.Search in Google Scholar

[3] M. Alibakhshikenari, B. S. Virdee, P. Shukla, et al., “Interaction between closely packed array antenna elements using meta-surface for applications such as MIMO systems and synthetic aperture radars,” Radio Sci., vol. 53, no. 11, pp. 1368–1381, 2018. https://doi.org/10.1029/2018RS006533.Search in Google Scholar

[4] J. Kulkarni, A. Desai, and C. Sim, “Two port CPW-fed MIMO antenna with wide bandwidth and high isolation for future wireless applications,” Int. J. RF Microw. Computer-Aided Eng., vol. 31, no. 8, p. e22700, 2021. https://doi.org/10.1002/mmce.22700.Search in Google Scholar

[5] C. K. Ghosh, M. Pratap, R. Kumar, and S. Pratap, “Mutual coupling reduction of microstrip MIMO antenna using microstrip resonator,” Wireless Pers. Commun., vol. 112, no. 3, pp. 2047–2056, 2020, https://doi.org/10.1007/s11277-020-07138-z.Search in Google Scholar

[6] A. Kumar, A. Q. Ansari, B. K. Kanaujia, J. Kishor, and L. Matekovits, “A review on different techniques of mutual coupling reduction between elements of any MIMO antenna. Part 2: metamaterials and many more,” Radio Sci., vol. 56, no. 3, p. e2020RS007222, 2021. https://doi.org/10.1029/2020RS007222.Search in Google Scholar

[7] A. Kumar, A. Q. Ansari, B. K. Kanaujia, J. Kishor, and L. Matekovits, “A review on different techniques of mutual coupling reduction between elements of any MIMO antenna. Part 1: DGSs and parasitic structures,” Radio Sci., vol. 56, no. 3, p. e2020RS007122, 2021. https://doi.org/10.1029/2020RS007122.Search in Google Scholar

[8] S. Chouhan, D. K. Panda, V. S. Kushwah, and S. Singhal, “Spider-shaped fractal MIMO antenna for WLAN/WiMAX/Wi-Fi/Bluetooth/C-band applications,” AEU – Int. J. Electron. Commun., vol. 110, p. 152871, 2019, https://doi.org/10.1016/j.aeue.2019.152871.Search in Google Scholar

[9] M. H. Reddy, D. Sheela, V. K. Parbot, and A. Sharma, “A compact metamaterial inspired UWB-MIMO fractal antenna with reduced mutual coupling,” Microsyst. Technol., vol. 27, no. 5, pp. 1971–1983, 2021, https://doi.org/10.1007/s00542-020-05024-z.Search in Google Scholar

[10] M. Agarwal, J. K. Dhanoa, and M. K. Khandelwal, “Ultrawide band two-port MIMO diversity antenna with triple notch bands, stable gain and suppressed mutual coupling,” AEU – Int. J. Electron. Commun., vol. 120, p. 153225, 2020, https://doi.org/10.1016/j.aeue.2020.153225.Search in Google Scholar

[11] S. Luo, D. Wang, Y. Chen, E. Li, and C. Jiang, “A compact dual-port UWB-MIMO antenna with quadruple band-notched characteristics,” AEU – Int. J. Electron. Commun., vol. 136, p. 153770, 2021, https://doi.org/10.1016/j.aeue.2021.153770.Search in Google Scholar

[12] S. Modak and T. Khan, “A slotted UWB-MIMO antenna with quadruple band-notch characteristics using mushroom EBG structure,” AEU – Int. J. Electron. Commun., vol. 134, 2021, p. 153673, https://doi.org/10.1016/j.aeue.2021.153673.Search in Google Scholar

[13] A. Kumar, A. Q. Ansari, B. K. Kanaujia, J. Kishor, and S. Kumar, “An ultra-compact two-port UWB-MIMO antenna with dual band-notched characteristics,” AEU – Int. J. Electron. Commun., vol. 114, p. 152997, 2020, https://doi.org/10.1016/j.aeue.2019.152997.Search in Google Scholar

[14] P. Moukala Mpele, F. Moukanda Mbango, D. B. O. Konditi, and F. Ndagijimana, “A tri-band and miniaturized planar antenna based on countersink and defected ground structure techniques,” Int. J. RF Microw. Computer-Aided Eng., vol. 31, no. 5, 2021, p. e22617, https://doi.org/10.1002/mmce.22617.Search in Google Scholar

[15] E. Rajo-iglesias, M. A. Systems, and M. S. Sharawi, “Wireless corner current misuses and future prospects for printed,” IEEE Antenn. Propag. Mag., vol. April, pp. 162–170, 2017.Search in Google Scholar

[16] A. B. Numan and M. S. Sharawi, “Extraction of material parameters for metamaterials using a full-wave simulator [education column],” IEEE Antenn. Propag. Mag., vol. 55, no. 5, pp. 202–211, 2013, https://doi.org/10.1109/MAP.2013.6735515.Search in Google Scholar

[17] A. N. Plastikov, “About two approaches to automation of a process of calculating metamaterial parameters according to the scattering-parameter extraction method using modern full-wave simulators,” Prog. Electromagn. Res. Symp., pp. 3763–3767, 2017, https://doi.org/10.1109/PIERS.2017.8262412.Search in Google Scholar

[18] D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E – Stat. Nonlinear Soft Matter Phys., vol. 71, no. 3, pp. 1–11, 2005, https://doi.org/10.1103/PhysRevE.71.036617.Search in Google Scholar PubMed

[19] Y. Qiu, L. Peng, X. Jiang, Z. Sun, and S. Tang, “Ultra-small single-negative metamaterial insulator for mutual coupling reduction of high-profile monopole antenna array,” Prog. in Electromagn. Res. C, vol. 72, no. January 2017, pp. 197–205, 2017, https://doi.org/10.2528/PIERC16100803.Search in Google Scholar

[20] T. Addepalli and V. R. Anitha, “Compact two-port mimo antenna with high isolation using parasitic reflectors for uwb, x and ku band applications,” Prog. in Electromagn. Res. C, vol. 102, no. March, pp. 63–77, 2020, https://doi.org/10.2528/pierc20030402.Search in Google Scholar

[21] L. Malviya, R. K. Panigrahi, and M. V. Kartikeyan, “MIMO antenna performance criteria,” in MIMO Antennas for Wireless Communication, 1st ed., Oxon, CRC Press, 2021, pp. 19–25.10.1201/9781003080275-ch04Search in Google Scholar

[22] S. Sharma, Mainuddin, B. K. Kanaujia, and M. K. Khandelwal, “Implementation of four-port MIMO diversity microstrip antenna with suppressed mutual coupling and cross-polarized radiations,” Microsyst. Technol., vol. 26, no. 3, pp. 993–1000, 2020, https://doi.org/10.1007/s00542-019-04574-1.Search in Google Scholar

[23] E. Fritz-Andrade, H. Jardon-Aguilar, and J. A. Tirado-Mendez, “The correct application of total active reflection coefficient to evaluate MIMO antenna systems and its generalization to N ports,” Int. J. RF Microw. Computer-Aided Eng., vol. 30, no. 4, p. e22113, 2020. https://doi.org/10.1002/mmce.22113.Search in Google Scholar

[24] F. Alnemr, M. F. Ahmed, and A. A. Shaalan, “A compact 28/38 GHz MIMO circularly polarized antenna for 5 G applications,” J. Infrared, Millim. Terahertz Waves, vol. 42, no. 3, pp. 338–355, 2021, https://doi.org/10.1007/s10762-021-00770-1.Search in Google Scholar

[25] E. J. Rothwell and R. O. Ouedraogo, “Antenna miniaturization: definitions, concepts, and a review with emphasis on metamaterials,” J. Electromagn. Waves Appl., vol. 28, no. 17, pp. 2089–2123, 2014, https://doi.org/10.1080/09205071.2014.972470.Search in Google Scholar

[26] X. Cao, Y. Xia, L. Wu, H. Zhang, and Q. Zeng, “Two-port ring shaped MIMO antenna with quad-band,” Int. J. RF Microw. Computer-Aided Eng., vol. 31, no. 9, p. e22782, 2021, https://doi.org/10.1002/mmce.22782.Search in Google Scholar

[27] R. Ramesh and U. K. Kommuri, “Isolation enhancement for dual-band MIMO antenna system using multiple slots loading technique,” Int. J. Commun. Syst., vol. 33, no. 12, p. e4470, 2020. https://doi.org/10.1002/dac.4470.Search in Google Scholar

[28] L. Wu and Y. Xia, “Compact UWB–MIMO antenna with quad-band-notched characteristic,” Int. J. Microw. Wireless Technol., vol. 9, no. 5, pp. 1147–1153, 2017, https://doi.org/10.1017/S1759078716001239.Search in Google Scholar

[29] M. Rasool, I. Rashid, A. Rauf, A. Masood, F. A. Bhatti, and B. Ijaz, “A multi-slotted 2-element quadband MIMO antenna for 4G and 5G applications,” J. Electromagn. Waves Appl., vol. 35, no. 15, pp. 2062–2077, 2021, https://doi.org/10.1080/09205071.2021.1934565.Search in Google Scholar

[30] A. K. Dwivedi, A. Sharma, A. K. Pandey, and V. Singh, “Two port circularly polarized MIMO antenna design and investigation for 5G communication systems,” Wireless Pers. Commun., vol. 120, no. 3, pp. 2085–2099, 2021, https://doi.org/10.1007/s11277-021-08461-9.Search in Google Scholar

[31] M. Anbarasu and J. Nithiyanantham, “Performance analysis of highly efficient two-port MIMO antenna for 5G wearable applications,” IETE J. Res., pp. 1–10, 2021, https://doi.org/10.1080/03772063.2021.1926345.Search in Google Scholar

Received: 2021-12-07
Accepted: 2022-08-12
Published Online: 2022-08-25
Published in Print: 2023-01-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.5.2024 from https://www.degruyter.com/document/doi/10.1515/freq-2021-0299/html
Scroll to top button