Skip to main content
Log in

Study of the Electron Density in an Inductively Coupled Plasma of Fluorine-Hydrogen-Argon Gas Mixture

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this paper, we present the results of non-contact measurements of electron density in an inductively coupled chemically active plasma at a pressure of 0.5 Torr. As a plasma-forming gas volatile compounds of halides BF3, SiF4, GeF4 mixed with hydrogen and argon were used. The electron density was determined by direct registration of the phase shift of the probing microwave radiation with a frequency of 58 GHz when passing through a cylindrical plasma layer. The method used makes it possible to increase the accuracy of measurements and level out the effects associated with the scattering and absorption of the useful signal by the plasma. It was experimentally shown that changing the content of argon and hydrogen in the ternary gas mixture (halogenide-hydrogen-argon) affects the electron density value in the discharge. Conclusions were drawn about the role of electron attachment to electronegative atoms and radicals as a mechanism for the loss of electrons in the studied low-pressure discharge in the presence of volatile fluorides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fridman A, (2008) Plasma chemistry, Cambridge

  2. Goldfarb VM, Dresvin SV (1995) Teplofiz Vys Temp 3:333

    Google Scholar 

  3. Rusanov VD, Fridman AA (2007) Physics of Chemically Active Plasma. CRC, Boca Raton

    Google Scholar 

  4. McDonald HO, Stephenson JB (1979) Chemical vapor deposition of group IVB, VB, and VIB elements: a literature review US department of interior. Bureau of Mines Information Circular P5

  5. Shabarova LV, Sennikov PG, Kornev RA, Plekhovich AD, Kutyin AM (2019) High Energy Chem 53:482–489

    Article  CAS  Google Scholar 

  6. Vodopyanov AV, Golubev SV, Mansfeld DA, Sennikov PG, Drozdov YN (2011) Experimental investigations of silicon tetrafluoride decomposition in ECR discharge plasma. Rev Sci Instrum 82:063503

    Article  CAS  Google Scholar 

  7. Sennikov PG, Kornev RA, Shishkin AI (2017) Preparation of boron carbide from BF3 and BCl3 in hydrogen plasma of Arc RF discharge. Plasma Chem Plasma Process 37(4):997–1008

    Article  CAS  Google Scholar 

  8. Kornev RA, Sennikov PG, Shabarova LV, Shishkin AI, Drozdova TA, Sintsov SV (2019) Reduction of boron trichloride in atmospheric-pressure argon-hydrogen radiofrequency induction plasma. High Energy Chem 53(3):246–253

    Article  CAS  Google Scholar 

  9. Kornev RA, Sennikov PG, Sintsov SV, Vodopyanov AV (2017) Microwave interferometry of chemically active plasma of RF discharge in mixtures based on fluorides of silicon and Germanium. Plasma Chem Plasma Process 37(6):1655–1661

    Article  CAS  Google Scholar 

  10. Vodopyanov AV, Golubev SV, Mansfeld DA, Sennikov PG, Drozdov YN (2011) Experimental investigations of silicon tetrafluoride decomposition in ECR discharge plasma. Rev Sci Instrum 82(6):063503

    Article  CAS  Google Scholar 

  11. Akatsuka H (2019) Optical Emission Spectroscopic (OES) analysis for diagnostics of electron density and temperature in non-equilibrium argon plasma based on collisional-radiative model. Adv Phys X 4:1592707

    CAS  Google Scholar 

  12. Cicala G, Capezzuto P, Bruno G (2001) Maria Cristina; Rossi Growth chemistry of SiC alloys from SiF 4–CH 4 plasmas. Appl Surf Sci 184(1):66–71

    Article  CAS  Google Scholar 

  13. V.N. Ochkin, Spectroscopy of low-temperature plasma, Wiley-VCH, 2009.

  14. Sintsov S, Vodopyanov A, Mansfeld D (2019) Measurement of electron temperature in a non-equilibrium discharge of atmospheric pressure supported by focused microwave radiation from a 24 GHz gyrotron. AIP Adv 9(10):1–8

    Article  Google Scholar 

  15. Sintsov S, Tabata K, Mansfeld D, Vodopyanov A, Komurasaki K (2020) Optical emission spectroscopy of non-equilibrium microwave plasma torch sustained by focused radiation of gyrotron at 24 GHz. J Phys D Appl Phys 53(30):305203

    Article  CAS  Google Scholar 

  16. Mansfeld D, Sintsov S, Chekmarev N, Vodopyanov A. (2020) Conversion of carbon dioxide in microwave plasma torch sustained by gyrotron radiation at frequency of 24 GHz at atmospheric pressure. J CO2 Util 40: 101197

  17. Sintsov SV, Vodopyanov AV, Viktorov ME, Morozkin MV, Glyavin Yu, M. (2020) Non-equilibrium atmospheric-pressure plasma torch sustained in a quasi-optical beam of subterahertz radiation. J Infrared Millim Terahertz Waves 41(6):711–727

    Article  CAS  Google Scholar 

  18. Bogaerts A, De Bie C, Eckert M, Georgieva V, Martens T, Neyts E, Tinck S (2010) Modeling of the plasma chemistry and plasma-surface interactions in reactive plasmas. Pure Appl Chem 82(6):1283–1299

    Article  CAS  Google Scholar 

  19. Kruger CH, Owano T, Gordon M, Laux C (1992) Nonequilibrium effects in thermal plasmas. Pure Appl Chem 64(5):607–613

    Article  CAS  Google Scholar 

  20. Xu KG, Doyle SJ (2016) Measurement of atmospheric pressure microplasma jet with Langmuir probes. J Vac Sci Technol Vac Surfaces Films 34(5):051301

    Article  Google Scholar 

  21. Evdokimov KE, Konishchev ME, Chzhilei S, Pichugin VF, Langmuir probe study of reactive magnetron discharge plasma in a three-component gas atmosphere, (2016) Instruments Exp. TechVol 59(6):816–821

    CAS  Google Scholar 

  22. Khattak, H. K., Buanucci, P. B., & Slepkov, A. D. (2019). Linking plasma formation in grapes to microwave resonances in aqueous dimers. Proceedings of the National Academy of Sciences, In Press, 6.

  23. Vodopyanov A, Mansfeld D, Sintsov S, Viktorov M (2019) Method for determining plasma density in a magnetic field. J Phys: Conf Ser 1400(7):077022

    CAS  Google Scholar 

  24. Faltýnek J, Hnilica J, Kudrle V (2016) Electron density in amplitude modulated microwave atmospheric plasma jet as determined from microwave interferometry and emission spectroscopy. Plasma Sour Sci Technol 26(1):015010

    Article  Google Scholar 

  25. Dittmann K, Küllig C, Meichsner J (2012) 160 GHz Gaussian beam microwave interferometry in low-density rf plasmas. Plasma Sour Sci Technol 21(2):024001

    Article  Google Scholar 

  26. Tudisco O, Lucca Fabris A, Falcetta C, Accatino L, De Angelis R, Manente M, Ferri F, Florean M, Neri C, Mazzotta C, Pavarin D (2013) A microwave interferometer for small and tenuous plasma density measurements. Rev Sci Instrum 84(3):033505

    Article  CAS  Google Scholar 

  27. Sedlacek M, Krumpholc M (2005) Digital measurement of phase difference-a comparative study of DSP algorithms. Metrol Measur Syst 4:427–48

    Google Scholar 

  28. Sintsov SV, Preobrazhensky EI, Kornev RA, Vodopyanov AV, Mansfeld DA (2022) Stand for Experimentally Studying Local Parameters of Chemically Active Induction Discharge Plasma. Instrum Exp Tech 65(3):419–25

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Russian Science Foundation (Project No. 20-13-00035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Sintsov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sintsov, S., Mansfeld, D., Preobrazhensky, E. et al. Study of the Electron Density in an Inductively Coupled Plasma of Fluorine-Hydrogen-Argon Gas Mixture. Plasma Chem Plasma Process 42, 1237–1247 (2022). https://doi.org/10.1007/s11090-022-10280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10280-0

Keywords

Navigation