Skip to main content

Advertisement

Log in

Industry 5.0 in Orthopaedics

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Industrial revolutions play a major role in the development of technologies in various fields. Currently, the world is marching towards softwarization and digitalization. There is an emerging need for conversion of Industry 4.0 to Industry 5.0 for technological development and implementation of the same in the digital era. In health care, digitalization emerged in Industry 4.0 revolution. To enhance patient care and quality of life, Industry 5.0 plays a major role in providing patient-centric care and customization and personalization of products. The integration of human intelligence with artificial intelligence provides a precise diagnosis and enhances the recovery and functional outcome of the patients.

Materials and methods

In this manuscript, the domains and limitations of Industry 5.0 and further research on Industry 6.0 were elaborated on to bring out technologies in better health care.

Results

Industry 5.0 lessens the work of medical professionals and integrates software-based diagnosis and management. It provides cost-effective manufacturing solutions with limited resources compared to Industry 4.0. Industry 5.0 focuses on SMART and additive manufacturing of implants, and the development of bio-scaffolds, prosthetics, and instruments. In this manuscript, the domains and limitations of Industry 5.0 and further research on Industry 6.0 were elaborated on to bring out technologies in better health care.

Conclusion

‘The personalization and customization of products’ are the hallmarks of this evolving Industry 5.0 revolution. The major uplifts in various domains of industry 5.0 such as advanced automation, digitalization, collaborative robots, and personalization bring this an inevitable mechano-scientific technological revolution in this current medical era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akundi, A., Euresti, D., Luna, S., Ankobiah, W., Lopes, A., & Edinbarough, I. (2022). State of industry 5.0—Analysis and identification of current research trends. Applied System Innovation, 5(1), 27.

    Article  Google Scholar 

  2. Demir, K. A., Döven, G., & Sezen, B. (2019). Industry 5.0 and human-robot co-working. Procedia Computer Science, 158, 688–695.

    Article  Google Scholar 

  3. Nahavandi, S. (2019). Industry 5.0—A human-centric solution. Sustainability, 11(16), 4371.

    Article  Google Scholar 

  4. Kua, J., Arora, C., Loke, S. W., Fernando, N., & Ranaweera, C. (2021). Internet of things in space: A review of opportunities and challenges from satellite-aided computing to digitally-enhanced space living. arXiv

  5. Jafari, N., Azarian, M., & Yu, H. (2022). Moving from industry 4.0 to Industry 5.0: What are the implications for smart logistics? Logistics, 6(2), 26.

    Article  Google Scholar 

  6. Haleem, A., & Javaid, M. (2019). Industry 5.0 and its applications in orthopaedics. Journal of Clinical Orthopaedics and Trauma, 10(4), 807–808.

    Article  PubMed  Google Scholar 

  7. Haleem, A., & Javaid, M. (2019). Industry 5.0 and its expected applications in medical field. Current Medicine Research and Practice, 9(4), 167–169.

    Article  Google Scholar 

  8. Knudsen, M., & Kai̇vo-Oja, J. (2020). Collaborative robots: Frontiers of current literature. Journal of Intelligent Systems: Theory and Applications, 3(2), 13–20.

    Google Scholar 

  9. Kartsakli, E., Lalos, A. S., Antonopoulos, A., Tennina, S., Di Renzo, M., Alonso, L., & Verikoukis, C. (2015). 20-Machine-to-Machine (M2M) Communications for e-Health Applications. In C. Antón-Haro & M. Dohler (Eds.), Machine-to-Machine (M2M) Communications (pp. 375–397). Woodhead Publishing.

    Chapter  Google Scholar 

  10. Shahzadi, S., Iqbal, M., Dagiuklas, T., & Qayyum, Z. U. (2017). Multi-access edge computing: Open issues, challenges and future perspectives. Journal of Cloud Computing, 6(1), 30.

    Article  Google Scholar 

  11. Wang, H., Wu, Y., Min, G., & Miao, W. (2022). A graph neural network-based digital twin for network slicing management. IEEE Transactions on Industrial Informatics, 18(2), 1367–1376.

    Article  Google Scholar 

  12. The Internet of Space (IoS): A Future Backbone for the Internet of Things? - IEEE Internet of Things. https://iot.ieee.org/newsletter/march-2016/the-internet-of-space-ios-a-future-backbone-for-the-internet-of-things.html. Accessed 22 May 2022.

  13. Nain, G., Fouquet, F., Morin, B., Barais, O., & Jézéquel, J.-M. (2010). Integrating IoT and IoS with a Component-Based Approach. In: 2010 36th EUROMICRO Conference on Software Engineering and Advanced Applications (pp. 191–98).

  14. Akyildiz, I. F., & Kak, A. (2019). The Internet of Space Things/CubeSats: A ubiquitous cyber-physical system for the connected world. Computer Networks, 150, 134–149.

    Article  Google Scholar 

  15. Nguyen, T., Lovén, L., Partala, J., & Pirttikangas, S. (2021). The intersection of blockchain and 6g technologies. In Y. Wu, S. Singh, T. Taleb, A. Roy, H. S. Dhillon, M. R. Kanagarathinam, & A. De (Eds.), 6G mobile wireless networks computer communications and networks (pp. 393–417). Springer International Publishing.

    Google Scholar 

  16. Frankel, R. I. (1996). Centennial of Röntgen’s discovery of x-rays. Western Journal of Medicine, 164(6), 497–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Scatliff, J. H., & Morris, P. J. (2014). From Roentgen to magnetic resonance imaging: The history of medical imaging. North Carolina Medical Journal, 75(2), 111–113.

    Article  PubMed  Google Scholar 

  18. Haleem, A., Javaid, M., & Vaishya, R. (2018). 4D printing and its applications in orthopaedics. Journal of Clinical Orthopaedics and Trauma, 9(3), 275–276.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Industry 5.0 opportunities and challenges for factory owners.https://digitalya.co/blog/industry-5-opportunities-and-challenges/. Published April 5, 2019. Accessed 25 May 2022.

  20. Grabowska, S., Saniuk, S., & Gajdzik, B. (2022). Industry 5.0: improving humanization and sustainability of Industry 4.0. Scientometrics, 127, 3117–3144.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Maddikunta, P. K. R., Pham, Q.-V., Prabadevi, B., Deepa, N., Dev, K., Gadekallu, T. R., Ruby, R., & Liyanage, M. (2022). Industry 5.0: A survey on enabling technologies and potential applications. Journal of Industrial Information Integration, 26, 100257. 

    Article  Google Scholar 

  22. Yes, Industry 5.0 is Already on the Horizon | Machine Design.https://www.machinedesign.com/automation-iiot/article/21835933/yes-industry-50-is-already-on-the-horizon. Accessed 26 Apr 2022.

  23. Lalehzarian, S. P., Gowd, A. K., & Liu, J. N. (2021). Machine learning in orthopaedic surgery. World Journal of Orthopedics, 12(9), 685–699.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Goh, J. C., Ho, N. C., & Bose, K. (1990). Principles and applications of Computer-Aided Design and Computer-Aided Manufacturing (CAD/CAM) technology in orthopaedics. Annals of the Academy of Medicine, Singapore, 19(5), 706–713.

    CAS  PubMed  Google Scholar 

  25. Nayak, S., & Das, R. K. (2020). Application of artificial intelligence (AI) in prosthetic and orthotic rehabilitation. IntechOpen.

    Book  Google Scholar 

  26. Alrazgan, M. (2022). Internet of medical things and edge computing for improving healthcare in smart cities. Mathematical Problems in Engineering, 2022, e5776954.

    Article  Google Scholar 

  27. Thomson, C., & Beale, R. (2021). Is blockchain ready for orthopaedics? A systematic review. Journal of Clinical Orthopaedics and Trauma, 23, 101615.

    Article  PubMed  Google Scholar 

  28. Shrestha, A. K., Vassileva, J., & Deters R. (2022). A blockchain platform for user data sharing ensuring user control and incentives. Front Blockchain, 3, 497985.

  29. Atlam, H. F., Walters, R. J., & Wills, G. B. (2018). Fog computing and the internet of things: A review. Big Data and Cognitive Computing, 2(2), 10.

    Article  Google Scholar 

  30. Azzam, N., Boukebbab, S., Chaves-Jacob, J., & Linares, J.-M. (2014). Adaptation trajectory in five axes machine to manufacture orthopedic prostheses. AIP Conference Proceedings, 1618(1), 639–642.

    Article  Google Scholar 

  31. Federer, S. J., & Jones, G. G. (2021). Artificial intelligence in orthopaedics: A scoping review. PLoS ONE, 16(11), e0260471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Han, X.-G., & Tian, W. (2019). Artificial intelligence in orthopedic surgery: Current state and future perspective. Chinese Medical Journal, 132(21), 2521–2523.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Makhni, E. C., Makhni, S., & Ramkumar, P. N. (2021). Artificial intelligence for the orthopaedic surgeon: An overview of potential benefits, limitations, and clinical applications. JAAOS - Journal of the American Academy of Orthopaedic Surgeons, 29(6), 235–243.

    Article  PubMed  Google Scholar 

  34. Myers, T. G., Ramkumar, P. N., Ricciardi, B. F., Urish, K. L., Kipper, J., & Ketonis, C. (2020). Artificial intelligence and orthopaedics: An introduction for clinicians. JBJS, 102(9), 830–840.

    Article  Google Scholar 

  35. Kencebay, B. (2020). Robotization and welfare trends in future. IntechOpen.

    Book  Google Scholar 

  36. eCential Robotics Is Giving Surgeons a Hand | Orthopedics This Week.https://ryortho.com/breaking/ecential-robotics-is-giving-surgeons-a-hand/. Accessed 25 May 2022.

  37. Haleem, A., & Javaid, M. (2019). Expected role of four-dimensional (4D) CT and four-dimensional (4D) MRI for the manufacturing of smart orthopaedics implants using 4D printing. Journal of Clinical Orthopaedics and Trauma, 10(Suppl 1), S234–S235.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rasch, H., Falkowski, A. L., Forrer, F., Henckel, J., & Hirschmann, M. T. (2013). 4D-SPECT/CT in orthopaedics: a new method of combined quantitative volumetric 3D analysis of SPECT/CT tracer uptake and component position measurements in patients after total knee arthroplasty. Skeletal Radiology, 42(9), 1215–1223.

    Article  PubMed  Google Scholar 

  39. Haleem, A., Javaid, M., Singh, R. P., & Suman, R. (2021). Significant roles of 4D printing using smart materials in the field of manufacturing. Advanced Industrial and Engineering Polymer Research, 4(4), 301–311.

    Article  Google Scholar 

  40. Alshahrani, H. A. (2021). Review of 4D printing materials and reinforced composites: Behaviors, applications and challenges. Journal of Science: Advanced Materials and Devices, 6(2), 167–185.

    Google Scholar 

  41. Anas, S., Khan, M. Y., Rafey, M., & Faheem, K. (2022). Concept of 5D printing technology and its applicability in the healthcare industry. Materials Today: Proceedings, 56, 1726–1732.

    Google Scholar 

  42. Haleem, A., Javaid, M., & Vaishya, R. (2019). 5D printing and its expected applications in Orthopaedics. Journal of Clinical Orthopaedics and Trauma, 10(4), 809–810.

    Article  PubMed  Google Scholar 

  43. Mitsuishi, M., Sugita, N., Fujiwara, K., Abe, N., Ozaki, T., Suzuki, M., Moriya, H., Inoue, T., Kuramoto, K., Nakashima, Y., & Tanimoto, K. (2007). Development of a medical CAD/CAM system for orthopedic surgery. CIRP Annals, 56(1), 405–410.

    Article  Google Scholar 

  44. Sonanis, S. V. (2008). Three–dimensional auto computer aided designing (auto-cad): a new tool for orthopaedic surgeons. Orthopaedic Proceedings, 90-B(SUPP_III), 563–564.

    Google Scholar 

  45. Wong, K. C., Kumta, S. M., Leung, K. S., Ng, K. W., Ng, E. W. K., & Lee, K. S. (2010). Integration of CAD/CAM planning into computer assisted orthopaedic surgery. Computer Aided Surgery, 15(4–6), 65–74.

    Article  CAS  PubMed  Google Scholar 

  46. Tamay, D. G., DursunUsal, T., Alagoz, A. S., Yucel, D., Hasirci, N., & Hasirci, V. (2019). 3D and 4D printing of polymers for tissue engineering applications. Frontiers in Bioengineering and Biotechnology, 7, 164.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Saska, S., Pilatti, L., Blay, A., & Shibli, J. A. (2021). Bioresorbable polymers: advanced materials and 4D printing for tissue engineering. Polymers, 13(4), 563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ahmed, A., Arya, S., Gupta, V., Furukawa, H., & Khosla, A. (2021). 4D printing: Fundamentals, materials, applications and challenges. Polymer, 228, 123926.

    Article  CAS  Google Scholar 

  49. Wan, Z., Zhang, P., Liu, Y., Lv, L., & Zhou, Y. (2020). Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomaterialia, 101, 26–42.

    Article  CAS  PubMed  Google Scholar 

  50. Ashammakhi, N., Ahadian, S., Zengjie, F., Suthiwanich, K., Lorestani, F., Orive, G., Ostrovidov, S., & Khademhosseini, A. (2018). Advances and future perspectives in 4D bioprinting. Biotechnology Journal, 13(12), e1800148. 

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tarnita, D., Tarnita, D., & Bolcu, D. (2011). Orthopaedic modular implants based on shape memory alloys. IntechOpen.

    Book  Google Scholar 

  52. Pfeifer, R., Müller, C. W., Hurschler, C., Kaierle, S., Wesling, V., & Haferkamp, H. (2013). Adaptable orthopedic shape memory implants. Procedia CIRP, 5, 253–258.

    Article  Google Scholar 

  53. Bakarich, S. E., Gorkin, R., in het Panhuis, M., & Spinks, G. M. (2014). Three-dimensional printing fiber reinforced hydrogel composites. ACS Applied Materials & Interfaces, 6(18), 15998–16006.

    Article  CAS  Google Scholar 

  54. Javaid, M., & Haleem, A. (2018). Additive manufacturing applications in orthopaedics: A review. Journal of Clinical Orthopaedics and Trauma, 9(3), 202–206.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Davoodi, E., Montazerian, H., Mirhakimi, A. S., Zhianmanesh, M., Ibhadode, O., Shahabad, S. I., Esmaeilizadeh, R., Sarikhani, E., Toorandaz, S., Sarabi, S. A., Nasiri, R., Zhu, Y., Kadkhodapour, J., Li, B., Khademhosseini, A., & Toyserkani, E. (2022). Additively manufactured metallic biomaterials. Bioactive Materials, 15, 214–249. 

    Article  CAS  PubMed  Google Scholar 

  56. Parvizi, J., Antoci, V., Hickok, N. J., & Shapiro, I. M. (2007). Selfprotective smart orthopedic implants. Expert Review of Medical Devices, 4(1), 55–64.

    Article  CAS  PubMed  Google Scholar 

  57. IyengarKarthikeyan, P., Kariya, A. D., Botchu, R., Jain, V. K., & Vaishya, R. (2022). Significant capabilities of SMART sensor technology and their applications for Industry 4.0 in trauma and orthopaedics. Sensors International, 3, 100163.

    Article  Google Scholar 

  58. Haleem, A., Javaid, M., & Vaishya, R. (2019). Holography applications for orthopaedics. The Indian Journal of Radiology & Imaging, 29(4), 477–479.

    Article  Google Scholar 

  59. Lu, L., Wang, H., Liu, P., Liu, R., Zhang, J., Xie, Y., Liu, S., Huo, T., Xie, M., Wu, X., & Ye, Z. (2022). Applications of mixed reality technology in orthopedics surgery: A pilot study. Front Bioeng Biotechnol, 10, 740507.

  60. Oppelt, K., Hogan, A., Stief, F., Grützner, P. A., & Trinler, U. (2020). Movement analysis in orthopedics and trauma surgery—Measurement systems and clinical applications. Zeitschrift Fur Orthopadie Und Unfallchirurgie, 158(3), 304–317.

    Article  PubMed  Google Scholar 

  61. Topley, M., & Richards, J. G. (2020). A comparison of currently available optoelectronic motion capture systems. Journal of Biomechanics, 106, 109820.

    Article  PubMed  Google Scholar 

  62. Chen, S., Chen, X., Geng, Z., & Su, J. (2022). The horizon of bone organoid: A perspective on construction and application. Bioactive Materials, 18, 15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, Z., Du, T., Ruan, C., & Niu, X. (2021). Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioactive Materials, 6(5), 1491–1511.

    Article  CAS  PubMed  Google Scholar 

  64. Collins, M. N., Ren, G., Young, K., Pina, S., Reis, R. L., & Oliveira, J. M. (2021). Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Advanced Functional Materials, 31(21), 2010609.

    Article  CAS  Google Scholar 

  65. Akiva, A., Melke, J., Ansari, S., Liv, N., van der Meijden, R., van Erp, M., Zhao, F., Stout, M., Nijhuis, W. H., de Heus, C., Ortera, M. C., Fermie, J., Klumperman, J., Ito, K., Sommerdijk, N., & Hofmann, S. (2021). An organoid for woven bone. Advanced Functional Materials, 31(17), 2010524.

    Article  CAS  Google Scholar 

  66. Mohamed, A. M. (2008). An overview of bone cells and their regulating factors of differentiation. The Malaysian Journal of Medical Sciences : MJMS, 15(1), 4–12.

    PubMed  PubMed Central  Google Scholar 

  67. Iordachescu, A., Hughes, E. A. B., Joseph, S., Hill, E. J., Grover, L. M., & Metcalfe, A. D. (2021). Trabecular bone organoids: a micron-scale ‘humanised’ prototype designed to study the effects of microgravity and degeneration. npj Microgravity, 7(1), 1–21.

    Article  Google Scholar 

  68. Yin, X., Mead, B. E., Safaee, H., Langer, R., Karp, J. M., & Levy, O. (2016). Stem cell organoid engineering. Cell Stem Cell, 18(1), 25–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim, J., Koo, B.-K., & Knoblich, J. A. (2020). Human organoids: Model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 21(10), 571–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Manolova, A., Tonchev, K., Poulkov, V., Dixir, S., & Lindgren, P. (2021). Context-aware holographic communication based on semantic knowledge extraction. Wireless Personal Communications, 120(3), 2307–2319.

    Article  Google Scholar 

  71. El-Fatyany, A., Wang, H., Abd El-atty, S. M., & Khan, M. (2020). Biocyber interface-based privacy for internet of bio-nano things. Wireless Personal Communications, 114(2), 1465–1483.

    Article  Google Scholar 

  72. Strategies NRC (US) C on E the I for HATR and I. Health Applications of the Internet National Academies Press (US); 2000

  73. Janjua, M. B., Duranay, A. E., & Arslan, H. (2022). Role of Wireless Communication in Healthcare System to Cater Disaster Situations Under 6G Vision. Front Comms Net, 1, 610879.

  74. Shen, X., & Shirmohammadi, S. (2008). Virtual and augmented reality. In B. Furht (Ed.), Encyclopedia of multimedia (pp. 962–967). Springer US.

    Chapter  Google Scholar 

  75. Duggal, A. S., Malik, P. K., Gehlot, A., Singh, R., Gaba, G. S., Masud, M., & Al-Amri, J.F. (2022). A sequential roadmap to industry 6.0: Exploring future manufacturing trends. IET Communications, 16(5), 521–531.

    Article  Google Scholar 

  76. Chourasia, S., Tyagi, A., Pandey, S. M., Walia, R. S., & Murtaza, Q. (2022). Sustainability of industry 60 in global perspective: Benefits and challenges. Mapan, 37, 443–452.

    Article  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

(I) Conception and design: MJ; (II) Administrative support: AN, and NJ; (III) Provision of study materials or patients: AN; (IV) Collection and assembly of data: MJ; (V) Data analysis and interpretation: All authors; and (VI) Manuscript writing: All authors. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Arulkumar Nallakumarasamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyaraman, M., Nallakumarasamy, A. & Jeyaraman, N. Industry 5.0 in Orthopaedics. JOIO 56, 1694–1702 (2022). https://doi.org/10.1007/s43465-022-00712-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-022-00712-6

Keywords

Navigation