Skip to main content
Log in

Characteristics and Formation Pathways of Iron- and Magnesium-Silicate-Hydrates and Smectites Under Natural Alkaline Conditions

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

Understanding the behavior of secondary minerals under alkaline conditions is important for predicting the potential alteration of the constituent minerals in radioactive-waste disposal facilities. A previous study reported the formation of uncommon Fe- and Mg-bearing clays under natural alkaline conditions in the Philippines; these were referred to as iron-magnesium-silicate-hydrates (F-M-S-H) and nontronite-like minerals. The current study aimed to investigate the structural and chemical characteristics and to understand the formation pathways of these clays by performing a detailed characterization. F-M-S-H comprised tetrahedral–octahedral–tetrahedral (TOT) layers, imperfect interlayer hydroxide sheets, and interlayer Ca ions. The systematic changes in the characteristics of F-M-S-H at different sampling depths, such as the gradual decrease of the interlayer hydroxide sheets to form smectitic domains, were caused by the differing interaction periods between each sediment at different sampling depths and alkaline seepage. Furthermore, F-M-S-H was ferrous in form prior to oxidation. In contrast, a nontronite-like mineral comprised nontronite and part of an interlayer hydroxide sheet. This mineral was inferred to be formed under chemically different conditions from F-M-S-H, and probably formed in the presence of aqueous Fe3+ and Mg ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable

References

  • Akbulut, A., & Kadir, S. (2003). The geology and origin of sepiolite, palygorskite and saponite in Neogene lacustrine sediments of the Serinhisar-Acipayam basin, Deṅizli, SW Turkey. Clays and Clay Minerals, 51, 279–292.

    Article  Google Scholar 

  • Aurelio, M. A., Forbes, M. T., Taguibao, K. J. L., Savella, R. B., Bacud, J. A., Franke, D., Pubellier, M., Savva, D., Meresse, F., Steuer, S., & Carranza, C. D. (2014). Middle to Late Cenozoic tectonic events in south and central Palawan (Philippines) and their implications to the evolution of the south-eastern margin of South China Sea: Evidence from onshore structural and offshore seismic data. Marine and Petroleum Geology, 58, 658–673.

    Article  Google Scholar 

  • Bain, D. C., & Russell, J. D. (1981). Swelling minerals in a basalt and its weathering products from Morvern, Scotland: II. Swelling chlorite. Clay Minerals, 16, 203–212.

    Article  Google Scholar 

  • Barnes, I., O'Neil, J. R., & Trescases, J. J. (1978). Present day serpentinization in New Caledonia, Oman and Yugoslavia. Geochimica et Cosmochimica Acta, 42(1), 144–145.

    Article  Google Scholar 

  • Baron, F., Petit, S., Pentrák, M., Decarreau, A., & Stucki, J. W. (2017). Revisiting the nontronite Mössbauer spectra. American Mineralogist, 102(7), 1501–1515.

    Article  Google Scholar 

  • Baron, F., Petit, S., Tertre, E., & Decarreau, A. (2016). Influence of aqueous Si and Fe speciation on tetrahedral Fe (III) substitutions in nontronites: A clay synthesis approach. Clays and Clay Minerals, 64(3), 230–244.

    Article  Google Scholar 

  • Benhammou, A., Tanouti, B., Nibou, L., Yaacoubi, A., & Bonnet, J. P. (2009). Mineralogical and physicochemical investigation of Mg-smectite from Kbel Ghassoul, Morocco. Clays and Clay Minerals, 57, 264–270.

    Article  Google Scholar 

  • Brindley, G. W., Bish, D. L., & Wan, H. M. (1979). Compositions, structures, and properties of nickel-containing minerals in the kerolite-pimelite series. American Mineralogist, 64, 615–625.

    Google Scholar 

  • Craw, D., Landis, C. A., & Kelsey, P. I. (1987). Authigenic chrysotile formation in the matrix of Quaternary debris flows, northern Southland, New Zealand. Clays and Clay Minerals, 35, 43–52.

    Article  Google Scholar 

  • Czaja, M., Kadziołka-Gaweł, M., Lisiecki, R., Bodył-Gajowska, S., & Mazurak, Z. (2014). Luminescence and other spectroscopic properties of purple and green Cr-clinochlore. Physics and Chemistry of Minerals, 41, 115–126.

    Article  Google Scholar 

  • Dauzeres, A., Achiedo, G., Nied, D., Bernard, E., Alahrache, S., & Lothenbach, B. (2016). Magnesium perturbation in low-pH concretes placed in clayey environment—solid characterizations and modeling. Cement and Concrete Research, 79, 137–150.

    Article  Google Scholar 

  • Decarreau, A., & Bonnin, D. (1986). Synthesis and crystallogenesis at low temperature of Fe (III)-smectites by evolution of coprecipitated gels: experiments in partially reducing conditions. Clay Minerals, 21(5), 861–877.

    Article  Google Scholar 

  • Decarreau, A., Bonnin, D., Badaut-Trauth, D., Couty, R., & Kaiser, P. (1987). Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions. Clay Minerals, 22(2), 207–223.

    Article  Google Scholar 

  • Decarreau, A., Petit, S., Martin, F., Farges, F., Vieillard, P., & Joussein, E. (2008). Hydrothermal synthesis, between 75 and 150°C, of high-charge, ferric nontronites. Clays and Clay Minerals, 56(3), 322–337.

    Article  Google Scholar 

  • Dyar, M. D., Agresti, D. G., Schaefer, M. W., Grant, C. A., & Sklute, E. C. (2006). Mössbauer spectroscopy of earth and planetary materials. Annual Reviews of Earth and Planetary Science, 34, 83–125.

    Article  Google Scholar 

  • Farmer, V. C. (1958). The infra-red spectra of talc, saponite, and hectorite. Mineralogical Magazine, 31, 829–845.

    Article  Google Scholar 

  • Fernández, R., González-Santamaría, D., Angulo, M., Torres, E., Ruiz, A. I., Turrero, M. J., & Cuevas, J. (2018). Geochemical conditions for the formation of Mg silicates phases in bentonite and implications for radioactive waste disposal. Applied Geochemistry, 93, 1–9.

    Article  Google Scholar 

  • Fujii, N., Yamakawa, M., Shikazono, N., & Sato, T. (2014). Geochemical and Mineralogical Characterizations of Bentonite interacted with Alkaline Fluids generating in Zambales Ophiolite, Northwestern Luzons, Philippines. The Geological Society of Japan, 120, 361–375 (in Japanese with English abstract).

    Article  Google Scholar 

  • Furquim, S. A. C., Barbiéro, L., Graham, R. C., de Queiroz Neto, J. P., Ferreira, R. P. D., & Furian, S. (2010). Neoformation of micas in soils surrounding an alkaline-saline lake of Pantanal wetland, Brazil. Geoderma, 158, 331–342.

    Article  Google Scholar 

  • Gainey, S. R., Hausrath, E. M., Adcock, C. T., Tschauner, O., Hurowitz, J. A., Ehlmann, B. L., Xiao, Y., & Bartlett, C. L. (2017). Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars. Nature communications, 8(1), 1–7.

    Article  Google Scholar 

  • García Calvo, J. L., Hidalgo, A., Alonso, C., & Fernández Luco, L. (2010). Development of low-pH cementitious materials for HLRW repositories. Resistance against ground waters aggression. Cement and Concrete Research, 40, 1290–1297.

    Article  Google Scholar 

  • Grauby, O., Petit, S., Decarreau, A., & Baronnet, A. (1994). The nontronite-saponite series: an experimental approach. European Journal of Mineralogy, 6, 99–112.

    Article  Google Scholar 

  • Johnston, J. H., & Cardile, C. M. (1985). Iron sites in nontronite and the effect of interlayer cations from Mössbauer spectra. Clays and Clay Minerals, 33, 21–30.

    Article  Google Scholar 

  • Kaufhold, S., Dohrmann, R., & Weber, C. (2020). Evolution of the pH value at the vicinity of the iron-bentonite interface. Applied Clay Science, 201, 105929.

    Article  Google Scholar 

  • Kodama, H., De Kimpe, C. R., & Dejou, J. (1988). Ferrian saponite in a gabbro saprolite at Mont Megantic, Quebec. Clays and Clay Minerals, 36, 102–110.

    Article  Google Scholar 

  • Kodama, H., Longworth, G., & Townsend, M. G. (1982). A Mössbauer investigation of some chlorites and their oxidation products. The Canadian Mineralogist, 20, 585–592.

    Google Scholar 

  • Kohyama, N., Shimoda, S., & Sudo, T. (1973). Iron-rich saponite (ferrous and ferric forms). Clays and Clay Minerals, 21, 229–237.

    Article  Google Scholar 

  • Lagaly, G., & Weiss, A. (1969). Determination of the layer charge in mica-type layer silicates. Pp. 61–80 in: Proceedings of the International Clay Conference, Tokyo, 1969, Volume 1 (L. Heller, editor). Israel University Press.

    Google Scholar 

  • Lerouge, C., Gaboreau, S., Grangeon, S., Claret, F., Warmont, F., Jenni, A., … Mäder, U. (2017). In situ interactions between Opalinus clay and low alkali concrete. Physics and Chemistry of the Earth, Parts A/B/C, 99, 3–21.

    Article  Google Scholar 

  • Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 1–10.

    Article  Google Scholar 

  • Madejová, J., Balan, E., & Petit, S. (2011). Application of vibrational spectroscopy to the characterization of phyllosilicates and other industrial minerals. EMU Notes in Mineralogy, 9, 171–226.

    Google Scholar 

  • Meunier, A. (2007). Soil hydroxy-interlayered minerals: a re-interpretation of their crystallochemical properties. Clays and Clay Minerals, 55(4), 380–388.

    Article  Google Scholar 

  • Milodowski, A. E., Norris, S., & Alexander, W. R. (2016). Minimal alteration of montmorillonite following long-term interaction with natural alkaline groundwater: Implications for geological disposal of radioactive waste. Applied Geochemistry, 66, 184–197.

    Article  Google Scholar 

  • Nishiki, Y., Sato, T., Katoh, T., Otake, T., & Kikuchi, R. (2020). Precipitation of magnesium silicate hydrates in natural alkaline surface environments. Clay Science, 24, 1–13.

    Google Scholar 

  • Olis, A. C., Malla, P. B., & Douglas, L. A. (1990). The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion. Clay Minerals, 25, 39–50.

    Article  Google Scholar 

  • Petit, S., Baron, F., & Decarreau, A. (2017). Synthesis of nontronite and other Fe-rich smectites: a critical review. Clay Minerals, 52, 469–483.

    Article  Google Scholar 

  • Petit, S., Caillaud, J., Righi, D., Madejová, J., Elsass, F., & Köster, H. M. (2002). Characterization and crystal chemistry of an Fe-rich montmorillonite from Ölberg, Germany. Clay Minerals, 37(2), 283–297.

    Article  Google Scholar 

  • Petit, S., Decarreau, A., Gates, W., Andrieux, P., & Grauby, O. (2015). Hydrothermal synthesis of dioctahedral smectites: The Al-Fe3+ chemical series. Part II: Crystal-chemistry. Applied Clay Science, 104, 96–105.

    Article  Google Scholar 

  • Rich, C. I., & Bonnet, J. A. (1975). Swelling chlorite in a soil of the Dominican Republic. Clays and Clay Minerals, 23(2), 97–102.

    Article  Google Scholar 

  • RWMC. (2016). Advancement of processing and disposal technique for the geological disposal of TRU waste (FY2015). https://www.enecho.meti.go.jp/category/electricity_and_gas/nuclear/rw/library/library06.html. Accessed 20 Apr 2022 (in Japanese).

  • RWMC. (2017). Advancement of processing and disposal technique for the geological disposal of TRU waste (FY2016). https://www.enecho.meti.go.jp/category/electricity_and_gas/nuclear/rw/library/library06.html. Accessed 20 Apr 2022 (in Japanese).

  • RWMC. (2018). Advancement of processing and disposal technique for the geological disposal of TRU waste (FY2017). https://www.enecho.meti.go.jp/category/electricity_and_gas/nuclear/rw/library/library06.html. Accessed 20 Apr 2022 (in Japanese).

  • Sellin, P., & Leupin, O. X. (2014). The use of clay as an engineered barrier in radioactive-waste management – a review. Clays and Clay Minerals, 61, 447–498.

    Google Scholar 

  • Shimbashi, M., Sato, T., Yamakawa, M., Fujii, N., & Otake, T. (2018). Formation of Fe-and Mg-rich smectite under hyperalkaline conditions at Narra in Palawan, the Philippines. Minerals, 8(4), 155.

    Article  Google Scholar 

  • Shimbashi, M., Yokoyama, S., Watanabe, Y., Sato, T., Otake, T., Kikuchi, R., Yamakawa, M., & Fujii, N. (2020). Formation of natural silicate hydrates by the interaction of alkaline seepage and sediments derived from serpentinized ultramafic rocks at Narra, Palawan, the Philippines. Minerals, 10, 719.

    Article  Google Scholar 

  • Shimoda, S. (1971). Mineralogical studies of a species of stevensite from the Obori mine, Yamagata Prefecture, Japan. Clay Minerals, 9, 185–192.

    Article  Google Scholar 

  • Shimoda, S. (1974). 2,3 Properties of so-called swelling chlorite. Journal of the Clay Science Society of Japan, 14, 79–89 (in Japanese with English abstract).

    Google Scholar 

  • Stephen, I., & MacEwan, D. M. C. (1950). Swelling chlorite. Geotechnique, 2, 82–83.

    Article  Google Scholar 

  • Treiman, A. H., Morris, R. V., Agresti, D. G., Graff, T. G., Achilles, C. N., Rampe, E. B., Bristow, T. F., Ming, D. W., Blake, D. F., Vaniman, D. T., Bish, D. L., Chipera, S. J., Morrison, S. M., & Downs, R. T. (2014). Ferrian saponite from the Santa Monica Mountains (California, U.S.A., Earth): Characterization as an analog for clay minerals on Mars with application to Yellowknife Bay in Gale Crater. American Mineralogist, 99, 2234–2250.

    Article  Google Scholar 

  • Wilson, J., Cressey, G., Cressey, B., Cuadros, J., Ragnarsdottir, K. V., Savage, D., & Shibata, M. (2006). The effect of iron on montmorillonite stability. (II) Experimental investigation. Geochimica et Cosmochimica Acta, 70(2), 323–336.

    Article  Google Scholar 

  • Yariv, S., & Heller-Kallai, L. (1975). The relationship between the IR spectra of serpentines and their structures. Clays and Clay Minerals, 23, 145–152.

    Article  Google Scholar 

  • Yokoyama, S., Shimbashi, M., Minato, D., Watanabe, Y., Jenni, A., & Mäder, U. (2021). Alteration of bentonite reacted with cementitious materials for 5 and 10 years in the Mont Terri Rock Laboratory (CI Experiment). Minerals, 11(3), 251.

    Article  Google Scholar 

  • Yoshida, H., Kitayama, K., Sato, T., & Kobayashi, Y. (2010). Natural analogues / Supporting geological disposal: Gaining evidence of predictability on 100 ka timescales. The Atomic Energy Society of Japan: ATOMOƩ, 52(8), 473–477 (in Japanese).

    Article  Google Scholar 

  • Zazzi, Å., Hirsch, T. K., Leonova, E., Kaikkonen, A., Grins, J., Annersten, H., & Edén, M. (2006). Structural investigations of natural and synthetic chlorite minerals by x-ray diffraction, Mössbauer spectroscopy and solid-state nuclear magnetic resonance. Clays and Clay Minerals, 54, 252–265.

    Article  Google Scholar 

  • Zviagina, B. B., McCarty, D. K., Środoń, J., & Drits, V. A. (2004). Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations. Clays and Clay Minerals, 52(4), 399–410.

    Article  Google Scholar 

Download references

Acknowledgments

This study was carried out as part of the Natural Analogue project within the “Advanced technology development for geological disposal of TRU waste” program commissioned by the Agency for Natural Resources and Energy in the Ministry of Economy, Trade and Industry of Japan. The authors thank Dr Fujii Naoki from Radioactive Waste Management Funding and Research Center for the principal management of the project. They also thank Dr Minoru Yamakawa from the Radioactive Waste Management Funding and Research Center, Mr Masanobu Nishimura and Mr Yukinobu Kimura of the Obayashi Corporation, Dr W. Russell Alexander from Bedrock Geosciences, and Professor Carlo Arcilla at the University of the Philippines for the field survey. Dr Yasutaka Watanabe and Dr Daisuke Minato from the Central Research Institute of Electric Power Industry are acknowledged for their help and valuable comments for performing research at this site. The authors thank the two anonymous reviewers for considerably improving the manuscript.

Funding

This work was funded by JSPS KAKENHI (grant number JP19H00878).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misato Shimbashi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimbashi, M., Yokoyama, S., Kikuchi, R. et al. Characteristics and Formation Pathways of Iron- and Magnesium-Silicate-Hydrates and Smectites Under Natural Alkaline Conditions. Clays Clay Miner. 70, 492–513 (2022). https://doi.org/10.1007/s42860-022-00197-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-022-00197-2

Keywords

Navigation