Skip to main content
Log in

Regulation of Conformational Changes in C-reactive Protein Alters its Bioactivity

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The acute phase C-reactive protein (CRP) is mainly synthesized and secreted by the liver in a cytokine-mediated response to infection or inflammation and circulates as a pentamer (pCRP) in plasma. Recent studies indicate that CRP is not only a marker but is directly involved in inflammation. CRP has a vital role in host defense and inflammation, metabolic function and scavenging through its ability for calcium depended binding to exogenous and endogenous molecules having phosphocholine followed by activation of the classical complement pathway. Accumulating evidence indicates that pCRP dissociates into monomeric CRP (mCRP) and most proinflammatory actions of CRP are only expressed following dissociation of its native pentameric assembly into mCRP. The dissociation of CRP into mCRP altogether promotes the ligand-binding capability. mCRP emerges to be the main conformation of CRP that participates in the regulation of local inflammation, however, little is identified concerning what triggers the significantly enhanced actions of mCRP and their binding to diverse ligands. The separation of mCRP from pCRP may be a direct relationship between CRP and inflammation. Here we review the current literature on CRP dissociation and its interaction with different ligands. The possibility to avoid the generation of the proinflammatory potential of mCRP has driven therapeutic approaches by targeting the dissociation mechanism of pCRP or inhibition of mCRP itself during inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CRP:

C-reactive protein

pCRP:

Petameric CRP

mCRP:

Monomeric CRP

CBS:

Cholesterol binding sequence

PC:

Phosphocholine

SAA:

Serum amyloid A

ECM:

Extracelluar matrix

NF-κB:

Nuclear factor kappa light chain enhancer of activated B cells

TNF alpha:

Tumour necrosis factor-alpha

STAT3:

Signal transducer and activator of transcription 3

LPS:

Lipopolysaccharide

LPC:

Lysophosphatidylcholine

ApoB:

Apolipoprotein B

LDL:

Low-density lipoprotein

C1q:

Complement component 1q

FIB:

Fibrinogen

Fn:

Fibronectin

VCAM-1:

Vascular-adhesion-molecule-1

ICAM-1:

Intercellular-adhesion-molecule-1

GPCR:

G protein-coupled receptor

EGFR:

Epidermal growth factor receptor

TCR:

T cell receptor

References

  1. Ashley, N. T., Weil, Z. M., & Nelson, R. J. (2012). Inflammation: mechanisms, costs, and natural variation. Annual Review of Ecology, Evolution, and Systematics, 43, 385–406.

    Article  Google Scholar 

  2. Majno, G., & Joris, I. (2004). Cells, tissues, and disease: principles of general pathology. Oxford University Press.

  3. Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428–435.

    Article  CAS  PubMed  Google Scholar 

  4. Francis, T., & Tillett, W. S. (1930). Cutaneous reactions in pneumonia. The development of antibodies following the intradermal injection of type-specific polysaccharide. Journal of Experimental Medicine, 52(4), 573–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gabay, C., & Kushner, I. (1999). Acute-Phase Proteins and Other Systemic Responses to Inflammation. New England Journal of Medicine, 340(6), 448–454. https://doi.org/10.1056/NEJM199902113400607.

    Article  CAS  PubMed  Google Scholar 

  6. Shrive, A. K., Gheetham, G. M. T., Holden, D., Myles, D. A. A., Turnell, W. G., Volanakis, J. E., & Greenhough, T. J. (1996). Three dimensional structure of human C-reactive protein. Nature structural biology, 3(4), 346–354.

    Article  CAS  PubMed  Google Scholar 

  7. Thompson, D., Pepys, M. B., & Wood, S. P. (1999). The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure, 7(2), 169–177.

    Article  CAS  PubMed  Google Scholar 

  8. Pradhan, A. D., Manson, J. E., Rifai, N., Buring, J. E., & Ridker, P. M. (2001). C-Reactive Protein, Interleukin 6, and Risk of Developing Type 2 Diabetes Mellitus. JAMA, 286(3), 327–334. https://doi.org/10.1001/jama.286.3.327.

    Article  CAS  PubMed  Google Scholar 

  9. Du Clos, T. W. (2000). Function of C-reactive protein. Annals of Medicine, 32(4), 274–278. https://doi.org/10.3109/07853890009011772.

    Article  PubMed  Google Scholar 

  10. Chang, M.-K., Binder, C. J., Torzewski, M., & Witztum, J. L. (2002). C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: phosphorylcholine of oxidized phospholipids. Proceedings of the National Academy of Sciences, 99(20), 13043–13048.

    Article  CAS  Google Scholar 

  11. Ji, S., Wu, Y., Zhu, L., Potempa, L. A., Sheng, F., Lu, W., & Zhao, J. (2007). Cell membranes and liposomes dissociate C‐reactive protein (CRP) to form a new, biologically active structural intermediate: mCRPm. The FASEB Journal, 21(1), 284–294.

    Article  CAS  PubMed  Google Scholar 

  12. Thiele, J. R., Habersberger, J., Braig, D., Schmidt, Y., Goerendt, K., Maurer, V., & von Dobschütz, E. (2014). Dissociation of pentameric to monomeric C-reactive protein localizes and aggravates inflammation: in vivo proof of a powerful proinflammatory mechanism and a new anti-inflammatory strategy. Circulation, 130(1), 35–50.

    Article  CAS  PubMed  Google Scholar 

  13. Yang, X., Tan, Y., Yu, F., & Zhao, M. (2012). Interference of antimodified C-reactive protein autoantibodies from lupus nephritis in the biofunctions of modified C-reactive protein. Human immunology, 73(2), 156–163.

    Article  CAS  PubMed  Google Scholar 

  14. Strang, F., Scheichl, A., Chen, Y., Wang, X., Htun, N., Bassler, N., & Peter, K. (2012). Amyloid plaques dissociate pentameric to monomeric C‐reactive protein: a novel pathomechanism driving cortical inflammation in Alzheimer’s disease? Brain Pathology, 22(3), 337–346.

    Article  CAS  PubMed  Google Scholar 

  15. Slevin, M., Matou‐Nasri, S., Turu, M., Luque, A., Rovira, N., Badimon, L., & De Vera, N. (2010). Modified C‐reactive protein is expressed by stroke neovessels and is a potent activator of angiogenesis in vitro. Brain pathology, 20(1), 151–165.

    Article  CAS  PubMed  Google Scholar 

  16. Eisenhardt, S. U., Habersberger, J., Murphy, A., Chen, Y.-C., Woollard, K. J., Bassler, N., & Ahrens, I. (2009). Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circulation Research, 105(2), 128–137.

    Article  CAS  PubMed  Google Scholar 

  17. Braig, D., Kaiser, B., Thiele, J. R., Bannasch, H., Peter, K., Stark, G. B., & Eisenhardt, S. U. (2014). A conformational change of C-reactive protein in burn wounds unmasks its proinflammatory properties. International Immunology, 26(8), 467–478.

    Article  CAS  PubMed  Google Scholar 

  18. Mihlan, M., Blom, A. M., Kupreishvili, K., Lauer, N., Stelzner, K., Bergström, F., & Zipfel, P. F. (2011). Monomeric C‐reactive protein modulates classic complement activation on necrotic cells. The FASEB Journal, 25(12), 4198–4210.

    Article  CAS  PubMed  Google Scholar 

  19. Braig, D., Nero, T. L., Koch, H.-G., Kaiser, B., Wang, X., Thiele, J. R., & Potempa, L. A. (2017). Transitional changes in the CRP structure lead to the exposure of proinflammatory binding sites. Nature Communications, 8, 14188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. K., L. W., W.M., N. H., Gert-Jan, W., H., J. L., A., V. C., W.A., V. F., … Erik, H. C (1997). C-Reactive Protein Colocalizes With Complement in Human Hearts During Acute Myocardial Infarction. Circulation, 95(1), 97–103. https://doi.org/10.1161/01.CIR.95.1.97.

    Article  Google Scholar 

  21. Gitlin, J. D., Gitlin, J. I., & Gitlin, D. (1977). Localization of C‐reactive protein in synovium of patients with rheumatoid arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 20(8), 1491–1499.

    Article  CAS  Google Scholar 

  22. Vigushin, D. M., Pepys, M. B., & Hawkins, P. N. (1993). Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. The Journal of Clinical Investigation, 91(4), 1351–1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Du Clos, T. W., Mold, C., Paterson, P. Y., Alroy, J., & Gewurz, H. (1981). Localization of C-reactive protein in inflammatory lesions of experimental allergic encephalomyelitis. Clinical and Experimental Immunology, 43(3), 565–573. Retrieved from https://pubmed.ncbi.nlm.nih.gov/7026095.

  24. PARISH, W. E. (1971). Studies on vasculitis. Clinical & Experimental Allergy, 1(1), 97–109. https://doi.org/10.1111/j.1365-2222.1971.tb02451.x.

    Article  CAS  Google Scholar 

  25. Sproston, N. R., & Ashworth, J. J. (2018). Role of C-Reactive Protein at Sites of Inflammation and Infection. Frontiers in Immunology. Retrieved from https://www.frontiersin.org/article/10.3389/fimmu.2018.00754.

  26. Shrive, A. K., Holden, D., Myles, D. A. A., & Greenhough, T. J. (1996). Structure solution of C-reactive proteins: molecular replacement with a twist. Acta Crystallographica Section D: Biological Crystallography, 52(6), 1049–1057.

    Article  CAS  Google Scholar 

  27. Black, S., Kushner, I., & Samols, D. (2004). C-reactive protein. Journal of Biological Chemistry, 279(47), 48487–48490.

    Article  CAS  PubMed  Google Scholar 

  28. Tillett, W. S., & Francis, T. Jr. (1930). Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. The Journal of Experimental Medicine, 52(4), 561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kinoshita, C. M., Ying, S. C., Hugli, T. E., Siegel, J. N., Potempa, L. A., Jiang, H., & Gewurz, H. (1989). Elucidation of a protease-sensitive site involved in the binding of calcium to C-reactive protein. Biochemistry, 28(25), 9840–9848.

    Article  CAS  PubMed  Google Scholar 

  30. Agrawal, A., Simpson, M. J., Black, S., Carey, M. P., & Samols, D. (2002). A C-reactive protein mutant that does not bind to phosphocholine and pneumococcal C-polysaccharide. The Journal of Immunology, 169(6), 3217–3222.

    Article  CAS  PubMed  Google Scholar 

  31. Black, S., Agrawal, A., & Samols, D. (2003). The phosphocholine and the polycation-binding sites on rabbit C-reactive protein are structurally and functionally distinct. Molecular Immunology, 39(16), 1045–1054. https://doi.org/10.1016/S0161-5890(03)00031-2.

    Article  CAS  PubMed  Google Scholar 

  32. Agrawal, A., Shrive, A. K., Greenhough, T. J., & Volanakis, J. E. (2001). Topology and structure of the C1q-binding site on C-reactive protein. The Journal of Immunology, 166(6), 3998–4004.

    Article  CAS  PubMed  Google Scholar 

  33. Agrawal, A., & Volanakis, J. E. (1994). Probing the C1q-binding site on human C-reactive protein by site-directed mutagenesis. The Journal of Immunology, 152(11), 5404–5410.

    CAS  PubMed  Google Scholar 

  34. Gaboriaud, C., Juanhuix, J., Gruez, A., Lacroix, M., Darnault, C., Pignol, D., & Arlaud, G. J. (2003). The crystal structure of the globular head of complement protein C1q provides a basis for its versatile recognition properties. Journal of Biological Chemistry, 278(47), 46974–46982.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, D., Sun, M., Samols, D., & Kushner, I. (1996). STAT3 participates in transcriptional activation of the C-reactive protein gene by interleukin-6. Journal of Biological Chemistry, 271(16), 9503–9509.

    Article  CAS  PubMed  Google Scholar 

  36. Agrawal, A., Samols, D., & Kushner, I. (2003). Transcription factor c-Rel enhances C-reactive protein expression by facilitating the binding of C/EBPβ to the promoter. Molecular Immunology, 40(6), 373–380.

    Article  CAS  PubMed  Google Scholar 

  37. Potempa, L. A., Maldonado, B. A., Laurent, P., Zemel, E. S., & Gewurz, H. (1983). Antigenic, electrophoretic and binding alterations of human C-reactive protein modified selectively in the absence of calcium. Molecular Immunology, 20(11), 1165–1175.

    Article  CAS  PubMed  Google Scholar 

  38. Potempa, L. A., Siegel, J. N., Fedel, B. A., Potempa, R. T., & Gewurz, H. (1987). Expression, detection and assay of a neoantigen (Neo-CRP) associated with a free, human C-reactive protein subunit. Molecular Immunology, 24(5), 531–541.

    Article  CAS  PubMed  Google Scholar 

  39. Braig, D., Nero, T. L., Koch, H.-G., Kaiser, B., Wang, X., Thiele, J. R., & Eisenhardt, S. U. (2017). Transitional changes in the CRP structure lead to the exposure of proinflammatory binding sites. Nature Communications, 8(1), 14188 https://doi.org/10.1038/ncomms14188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ying, S.-C., Gewurz, H., Kinoshita, C. M., Potempa, L. A., & Siegel, J. N. (1989). Identification and partial characterization of multiple native and neoantigenic epitopes of human C-reactive protein by using monoclonal antibodies. The Journal of Immunology, 143(1), 221–228.

    CAS  PubMed  Google Scholar 

  41. Thiele, J. R., Zeller, J., Bannasch, H., Stark, G. B., Peter, K., & Eisenhardt, S. U. (2015). Targeting C-reactive protein in inflammatory disease by preventing conformational changes. Mediators of Inflammation, 2015(372432). https://doi.org/10.1155/2015/372432.

  42. Ciubotaru, I., Potempa, L. A., & Wander, R. C. (2005). Production of modified C-reactive protein in U937-derived macrophages. Experimental Biology and Medicine, 230(10), 762–770.

    Article  CAS  PubMed  Google Scholar 

  43. Motie, M., Schaul, K. W., & Potempa, L. A. (1998). Biodistribution and clearance of125I-Labeled C-reactive protein and 125I-labeled modified C-Reactive protein in CD-1 Mice. Drug Metabolism and Disposition, 26(10), 977–981.

    CAS  PubMed  Google Scholar 

  44. von Hundelshausen, P., & Weber, C. (2007). Platelets as immune cells: bridging inflammation and cardiovascular disease. Circulation research, 100(1), 27–40.

    Article  Google Scholar 

  45. Haimovich, B., Ji, P., Ginalis, E., Kramer, R., & Greco, R. (1999). Phospholipase A2 enzymes regulate αIIbβ3-mediated, but not FcγRII receptor-mediated, pp125FAK phosphorylation in platelets. Thrombosis and haemostasis, 81(04), 618–624.

    Article  CAS  PubMed  Google Scholar 

  46. Khreiss, T., József, L., Potempa, L. A., & Filep, J. G. (2004). Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation, 109(16), 2016–2022.

    Article  CAS  PubMed  Google Scholar 

  47. Habersberger, J., Strang, F., Scheichl, A., Htun, N., Bassler, N., Merivirta, R.-M., & Eisenhardt, S. U. (2012). Circulating microparticles generate and transport monomeric C-reactive protein in patients with myocardial infarction. Cardiovascular Research, 96(1), 64–72.

    Article  CAS  PubMed  Google Scholar 

  48. Khreiss, T., József, L., Hossain, S., Chan, J. S. D., Potempa, L. A., & Filep, J. G. (2002). Loss of pentameric symmetry of C-reactive protein is associated with delayed apoptosis of human neutrophils. Journal of Biological Chemistry, 277(43), 40775–40781.

    Article  CAS  PubMed  Google Scholar 

  49. Zouki, C., Haas, B., Chan, J. S. D., Potempa, L. A., & Filep, J. G. (2001). Loss of pentameric symmetry of C-reactive protein is associated with promotion of neutrophil-endothelial cell adhesion. The Journal of Immunology, 167(9), 5355–5361.

    Article  CAS  PubMed  Google Scholar 

  50. Heuertz, R. M., Ahmed, N., & Webster, R. O. (1996). Peptides derived from C-reactive protein inhibit neutrophil alveolitis. The Journal of Immunology, 156(9), 3412–3417.

    CAS  PubMed  Google Scholar 

  51. Khreiss, T., József, L., Potempa, L. A., & Filep, J. G. (2004). Opposing effects of C-reactive protein isoforms on shear-induced neutrophil-platelet adhesion and neutrophil aggregation in whole blood. Circulation, 110(17), 2713–2720.

    Article  CAS  PubMed  Google Scholar 

  52. Ji, S.-R., Ma, L., Bai, C.-J., Shi, J.-M., Li, H.-Y., Potempa, L. A., & Wu, Y. (2009). Monomeric C‐reactive protein activates endothelial cells via interaction with lipid raft microdomains. The FASEB Journal, 23(6), 1806–1816.

    Article  CAS  PubMed  Google Scholar 

  53. Li, H.-Y., Wang, J., Meng, F., Jia, Z.-K., Su, Y., Bai, Q.-F., & Yan, Y.-B. (2016). An intrinsically disordered motif mediates diverse actions of monomeric C-reactive protein. Journal of Biological Chemistry, 291(16), 8795–8804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ying, S.-C., Shephard, E., De Beer, F. C., Siegel, J. N., Harris, D., Gewurz, B. E., & Gewurz, H. (1992). Localization of sequence-determined neoepitopes and neutrophil digestion fragments of C-reactive protein utilizing monoclonal antibodies and synthetic peptides. Molecular Immunology, 29(5), 677–687.

    Article  CAS  PubMed  Google Scholar 

  55. Shephard, E. G., Beer, S. M., Anderson, R., Strachan, A. F., Nel, A. E., & De Beer, F. C. (1989). Generation of biologically active C-reactive protein peptides by a neutral protease on the membrane of phorbol myristate acetate-stimulated neutrophils. The Journal of Immunology, 143(9), 2974–2981.

    CAS  PubMed  Google Scholar 

  56. Shephard, E. G., Anderson, R., Rosen, O., Myer, M. S., Fridkin, M., Strachan, A. F., & De Beer, F. C. (1990). Peptides generated from C-reactive protein by a neutrophil membrane protease. Amino acid sequence and effects of peptides on neutrophil oxidative metabolism and chemotaxis. The Journal of Immunology, 145(5), 1469–1476.

    CAS  PubMed  Google Scholar 

  57. El Kebir, D., Zhang, Y., Potempa, L. A., Wu, Y., Fournier, A., & Filep, J. G. (2011). C‐reactive protein‐derived peptide 201–206 inhibits neutrophil adhesion to endothelial cells and platelets through CD32. Journal of leukocyte Biology, 90(6), 1167–1175.

    Article  CAS  PubMed  Google Scholar 

  58. Ji, S.-R., Wu, Y., Potempa, L. A., Qiu, Q., & Zhao, J. (2006). Interactions of C-reactive protein with low-density lipoproteins: implications for an active role of modified C-reactive protein in atherosclerosis. The International Journal of Biochemistry & Cell Biology, 38(4), 648–661.

    Article  CAS  Google Scholar 

  59. Wang, M. Y., Ji, S. R., Bai, C. J., El Kebir, D., Li, H. Y., Shi, J. M., Zhu, W., Costantino, S., Zhou, H. H., & Potempa, L. A. (2011). A redox switch in C‐reactive protein modulates activation of endothelial cells. The FASEB Journal, 25(9), 3186–3196.

    Article  CAS  PubMed  Google Scholar 

  60. Potempa, L. A., Yao, Z.-Y., Ji, S.-R., Filep, J. G., & Wu, Y. (2015). Solubilization and purification of recombinant modified C-reactive protein from inclusion bodies using reversible anhydride modification. Biophysics Reports, 1(1), 18–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Healy, B., & Freedman, A. (2006). Infections. Bmj, 332(7545), 838–841.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ridker, P. M., Rifai, N., Rose, L., Buring, J. E., & Cook, N. R. (2002). Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. New England Journal of Medicine, 347(20), 1557–1565.

    Article  CAS  PubMed  Google Scholar 

  63. Lagrand, W. K., Niessen, H. W. M., Wolbink, G.-J., Jaspars, L. H., Visser, C. A., Verheugt, F. W. A., & Hack, C. E. (1997). C-reactive protein colocalizes with complement in human hearts during acute myocardial infarction. Circulation, 95(1), 97–103.

    Article  CAS  PubMed  Google Scholar 

  64. Osman, R., L’Allier, P. L., Elgharib, N., & Tardif, J.-C. (2006). Critical appraisal of C-reactive protein throughout the spectrum of cardiovascular disease. Vascular Health and Risk Management, 2(3), 221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Griselli, M., Herbert, J., Hutchinson, W. L., Taylor, K. M., Sohail, M., Krausz, T., & Pepys, M. B. (1999). C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction. The Journal of Experimental Medicine, 190(12), 1733–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hart, P. C., Rajab, I. M., Alebraheem, M., & Potempa, L. A. (2020). C-Reactive Protein and Cancer—Diagnostic and Therapeutic Insights. Frontiers in Immunology, 11, 595835.

  67. Amano, K., Maeda, I., Morita, T., Miura, T., Inoue, S., Ikenaga, M., & Yamaguchi, T. (2016). Clinical implications of C-reactive protein as a prognostic marker in advanced cancer patients in palliative care settings. Journal of Pain and Symptom Management, 51(5), 860–867.

    Article  PubMed  Google Scholar 

  68. Clyne, B., & Olshaker, J. S. (1999). The C-reactive protein. The Journal of Emergency Medicine, 17(6), 1019–1025.

    Article  CAS  PubMed  Google Scholar 

  69. Soinio, M., Marniemi, J., Laakso, M., Lehto, S., & Rönnemaa, T. (2006). High-sensitivity C-reactive protein and coronary heart disease mortality in patients with type 2 diabetes: a 7-year follow-up study. Diabetes Care, 29(2), 329–333.

    Article  CAS  PubMed  Google Scholar 

  70. Luan, Y., & Yao, Y. (2018). The clinical significance and potential role of C-reactive protein in chronic inflammatory and neurodegenerative diseases. Frontiers in Immunology, 9, 1302. https://doi.org/10.3389/fimmu.2018.01302.

  71. Puzianowska-Kuźnicka, M., Owczarz, M., Wieczorowska-Tobis, K., Nadrowski, P., Chudek, J., Slusarczyk, P., & Mossakowska, M. (2016). Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immunity & Ageing, 13(1), 1–12.

    Article  Google Scholar 

  72. Cylwik, B., Chrostek, L., Gindzienska-Sieskiewicz, E., Sierakowski, S., & Szmitkowski, M. (2010). Relationship between serum acute-phase proteins and high disease activity in patients with rheumatoid arthritis. Advances in medical sciences, 55(1), 80–85.

    Article  CAS  PubMed  Google Scholar 

  73. Christoffersen, C., Benn, M., Christensen, P. M., Gordts, P. L. S. M., Roebroek, A. J. M., Frikke-Schmidt, R., & Nielsen, L. B. (2012). The plasma concentration of HDL-associated apoM is influenced by LDL receptor-mediated clearance of apoB-containing particles. Journal of Iipid research, 53(10), 2198–2204.

    CAS  Google Scholar 

  74. Davidson, M. H. (2008). Is LDL-C passed its prime? The emerging role of non-HDL, LDL-P, and ApoB in CHD risk assessment. Arteriosclerosis, thrombosis, and vascular biology, 28(9), 1582–1583.

  75. Nguyen, A. T., Braschi, S., Geoffrion, M., Fong, L. G., Crooke, R. M., Graham, M. J., & Milne, R. (2006). A mouse monoclonal antibody specific for mouse apoB48 and apoB100 produced by immunizing “apoB39-only” mice with mouse apoB48. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1761(2), 182–185.

    CAS  Google Scholar 

  76. Hisatomi, A., & Yamamoto, K. (1999). Nihon rinsho. Japanese journal of clinical medicine, 57(Suppl), 93–95.

  77. McCahill, A., Lankester, D. J., Park, B. S., Price, N. T., & Zammit, V. A. (2000). Acute modulation of the extent of apoB mRNA editing and the relative rates of syntheses of apoB48 and apoB100 in cultured rat hepatocytes by osmotic and other stress stimuli. Molecular and Cellular Biochemistry, 208(1), 77–88.

    Article  CAS  PubMed  Google Scholar 

  78. Young, S. G., Farese, R. V. Jr., Pierotti, V. R., Taylor, S., Grass, D. S., & Linton, M. F. (1994). Transgenic mice expressing human apoB100 and apoB48. Current Opinion in Lipidology, 5(2), 94–101.

    Article  CAS  PubMed  Google Scholar 

  79. Rowe, I. F., Soutar, A. K., Trayner, I. M., Baltz, M. L., De Beer, F. C., Walker, L., & Pepys, M. B. (1984). Rabbit and rat C-reactive proteins bind apolipoprotein B-containing lipoproteins. The Journal of Experimental Medicine, 159(2), 604–616.

    Article  CAS  PubMed  Google Scholar 

  80. Schwedler, S. B., Amann, K., Wernicke, K., Krebs, A., Nauck, M., Wanner, C., & Galle, J. (2005). Native C-Reactive Protein Increases Whereas Modified C-Reactive Protein Reduces Atherosclerosis in Apolipoprotein E–Knockout Mice. Circulation, 112(7), 1016–1023. https://doi.org/10.1161/CIRCULATIONAHA.105.556530.

    Article  CAS  PubMed  Google Scholar 

  81. Gaboriaud, C., Frachet, P., Thielens, N., & Arlaud, G. (2012). The human c1q globular domain: structure and recognition of non-immune self ligands. Frontiers in Immunology, 2, 92.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Manolov, D. E., Röcker, C., Hombach, V., Nienhaus, G. U., & Torzewski, J. (2004). Ultrasensitive confocal fluorescence microscopy of C-reactive protein interacting with FcγRIIa. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(12), 2372–2377.

    Article  CAS  PubMed  Google Scholar 

  83. Ji, S.-R., Wu, Y., Potempa, L. A., Liang, Y.-H., & Zhao, J. (2006). Effect of modified C-reactive protein on complement activation: a possible complement regulatory role of modified or monomeric C-reactive protein in atherosclerotic lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(4), 935–941.

    Article  CAS  PubMed  Google Scholar 

  84. Jiang, H., Robey, F. A., & Gewurz, H. (1992). Localization of sites through which C-reactive protein binds and activates complement to residues 14-26 and 76-92 of the human C1q A chain. The Journal of Experimental Medicine, 175(5), 1373–1379.

    Article  CAS  PubMed  Google Scholar 

  85. Ma, X., Ji, S.-R., & Wu, Y. (2013). Regulated conformation changes in C-reactive protein orchestrate its role in atherogenesis. Chinese Science Bulletin, 58(14), 1642–1649.

    Article  CAS  Google Scholar 

  86. Wu, Y., Potempa, L. A., El Kebir, D., & Filep, J. G. (2015). C-reactive protein and inflammation: conformational changes affect function. Biological Chemistry, 396(11), 1181–1197.

    Article  CAS  PubMed  Google Scholar 

  87. Keene, D. R., Engvall, E., & Glanville, R. W. (1988). Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network. The Journal of cell biology, 107(5), 1995–2006.

    Article  CAS  PubMed  Google Scholar 

  88. Cescon, M., Gattazzo, F., Chen, P., & Bonaldo, P. (2015). Collagen VI at a glance. Journal of Cell Science, 128(19), 3525–3531.

    CAS  PubMed  Google Scholar 

  89. Molins, B., Peña, E., Vilahur, G., Mendieta, C., Slevin, M., & Badimon, L. (2008). C-Reactive Protein Isoforms Differ in Their Effects on Thrombus Growth. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(12), 2239–2246. https://doi.org/10.1161/ATVBAHA.108.174359.

    Article  CAS  PubMed  Google Scholar 

  90. Hanington, P. C., & Zhang, S.-M. (2011). The primary role of fibrinogen-related proteins in invertebrates is defense, not coagulation. Journal of Innate Immunity, 3(1), 17–27.

    Article  CAS  PubMed  Google Scholar 

  91. Karlsson, M., Ternström, L., Hyllner, M., Baghaei, F., Skrtic, S., & Jeppsson, A. (2011). Prophylactic fibrinogen infusion in cardiac surgery patients: effects on biomarkers of coagulation, fibrinolysis, and platelet function. Clinical and Applied Thrombosis/Hemostasis, 17(4), 396–404.

    Article  CAS  Google Scholar 

  92. Nielsen, V. G., Malayaman, S. N., Khan, E. S., Kirklin, J. K., & George, J. F. (2010). Carbon monoxide releasing molecule-2 increases fibrinogen-dependent coagulation kinetics but does not enhance prothrombin activity. Blood Coagulation & Fibrinolysis, 21(4), 349–353.

    Article  CAS  Google Scholar 

  93. Schöchl, H., Nienaber, U., Hofer, G., Voelckel, W., Jambor, C., Scharbert, G., & Solomon, C. (2010). Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM®)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Critical Care, 14(2), 1–11.

    Article  Google Scholar 

  94. Verheul, H. M. W., van Erp, K., Homs, M. Y. V., Yoon, G. S., van Der Groep, P., Rogers, C., & Pili, R. (2010). The Relationship of Vascular Endothelial Growth Factor and Coagulation Factor (Fibrin and Fibrinogen) Expression in Clear Cell Renal Cell Carcinoma. Urology, 75(3), 608–614. https://doi.org/10.1016/j.urology.2009.05.075.

    Article  PubMed  Google Scholar 

  95. Zhou, B., Ying, P. A. N., & Zhai, Z. (2011). Fibrinogen and P-selectin expression in atherosclerosis model of Sprague Dawley rat. Chinese Medical Journal, 124(22), 3768–3772.

    CAS  PubMed  Google Scholar 

  96. Mao, M.-J., Hu, J.-P., Chen, F.-R., Zhang, Y.-Y., & Liu, P. (2011). Effects of Chinese herbal medicine Guanxinkang on lipid metabolism and serum C-reactive protein, amyloid A protein and fibrinogen in apolipoprotein E-knockout mice with atherosclerosis. Zhong xi yi jie he xue bao= Journal of Chinese Integrative Medicine, 9(3), 306–312.

    PubMed  Google Scholar 

  97. Tosetto, A., Prati, P., Baracchini, C., Manara, R., & Rodeghiero, F. (2011). Association of plasma fibrinogen, C-reactive protein and G-455> A polymorphism with early atherosclerosis in the VITA Project cohort. Thrombosis and Haemostasis, 105(02), 329–335.

    Article  PubMed  Google Scholar 

  98. Danesh, J., Collins, R., Appleby, P., & Peto, R. (1998). Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. Jama, 279(18), 1477–1482.

    Article  CAS  PubMed  Google Scholar 

  99. Graille, M., Pagano, M., Rose, T., Ravaux, M. R., & Van Tilbeurgh, H. (2010). Zinc induces structural reorganization of gelatin binding domain from human fibronectin and affects collagen binding. Structure, 18(6), 710–718.

    Article  CAS  PubMed  Google Scholar 

  100. Ullah, N., Ma, F.-R., Han, J., Liu, X.-L., Fu, Y., Liu, Y.-T., … Li, H.-Y. (2020). Monomeric C-reactive protein regulates fibronectin mediated monocyte adhesion. Molecular Immunology, 117. https://doi.org/10.1016/j.molimm.2019.10.013.

  101. Zhou, Z., Qutaish, M., Han, Z., Schur, R. M., Liu, Y., Wilson, D. L., & Lu, Z.-R. (2015). MRI detection of breast cancer micrometastases with a fibronectin-targeting contrast agent. Nature Communications, 6, 7984 https://doi.org/10.1038/ncomms8984.

    Article  CAS  PubMed  Google Scholar 

  102. Magnusson, M. K., & Mosher, D. F. (1998). Fibronectin: structure, assembly, and cardiovascular implications. Arteriosclerosis, Thrombosis, and Vascular Biology, 18(9), 1363–1370.

    Article  CAS  PubMed  Google Scholar 

  103. Li, S.-L., Feng, J.-R., Zhou, H.-H., Zhang, C.-M., Lv, G.-B., Tan, Y.-B., & Wang, M.-Y. (2018). Acidic pH promotes oxidation-induced dissociation of C-reactive protein. Molecular Immunology, 104, 47–53.

    Article  CAS  PubMed  Google Scholar 

  104. Ohsawa, T. (1980). Change in permeability of liposomal membranes mediated by C-reactive protein and its inhibition by cholesterol. The Japanese Journal of Experimental Medicine, 50(1), 67–71.

    CAS  PubMed  Google Scholar 

  105. Taskinen, S., Hyvönen, M., Kovanen, P. T., Meri, S., & Pentikäinen, M. O. (2005). C-reactive protein binds to the 3β-OH group of cholesterol in LDL particles. Biochemical and Biophysical Research Communications, 329(4), 1208–1216.

    Article  CAS  PubMed  Google Scholar 

  106. Colotta, F., Re, F., Polentarutti, N., Sozzani, S., & Mantovani, A. (1992). Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood, 80(8), 2012–2020.

  107. Lee, A., Whyte, M. K. B., & Haslett, C. (1993). Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. Journal of leukocyte Biology, 54(4), 283–288.

    Article  CAS  PubMed  Google Scholar 

  108. Liles, W. C., Dale, D. C., & Klebanoff, S. J. (1995). Glucocorticoids inhibit apoptosis of human neutrophils. Blood, 86(8), 3181–3188.

  109. Ross, R. (1999). Atherosclerosis—an inflammatory disease. New England Journal of Medicine, 340(2), 115–126.

    Article  CAS  PubMed  Google Scholar 

  110. Li, H.-Y., Wang, J., Wu, Y.-X., Zhang, L., Liu, Z.-P., Filep, J. G., & Ji, S.-R. (2014). Topological localization of monomeric C-reactive protein determines proinflammatory endothelial cell responses. Journal of Biological Chemistry, 289(20), 14283–14290.

    Article  CAS  PubMed  Google Scholar 

  111. Elices, M. J., Osborn, L., Takada, Y., Crouse, C., Luhowskyj, S., Hemler, M. E., & Lobb, R. R. (1990). VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell, 60(4), 577–584.

    Article  CAS  PubMed  Google Scholar 

  112. Springer, T. A. (1994). Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell, 76(2), 301–314.

    Article  CAS  PubMed  Google Scholar 

  113. Massberg, S., Enders, G., Matos, F. C., de, M., Tomic, L. I. D., Leiderer, R., Eisenmenger, S., & Krombach, F. (1999). Fibrinogen deposition at the postischemic vessel wall promotes platelet adhesion during ischemia-reperfusion in vivo. Blood. The Journal of the American Society of Hematology, 94(11), 3829–3838.

    CAS  Google Scholar 

  114. Semple, J. W., Italiano, J. E., & Freedman, J. (2011). Platelets and the immune continuum. Nature Reviews Immunology, 11(4), 264–274.

    Article  CAS  PubMed  Google Scholar 

  115. Molins, B., Pena, E., de la Torre, R., & Badimon, L. (2011). Monomeric C-reactive protein is prothrombotic and dissociates from circulating pentameric C-reactive protein on adhered activated platelets under flow. Cardiovascular Research, 92(2), 328–337.

    Article  CAS  PubMed  Google Scholar 

  116. De la Torre, R., Pena, E., Vilahur, G., Slevin, M., & Badimon, L. (2013). Monomerization of C‐reactive protein requires glycoprotein IIb‐IIIa activation: pentraxins and platelet deposition. Journal of Thrombosis and Haemostasis, 11(11), 2048–2058.

    Article  PubMed  Google Scholar 

  117. Zwaka, T. P., Hombach, V., & Torzewski, J. (2001). C-reactive protein–mediated low density lipoprotein uptake by macrophages: implications for atherosclerosis. Circulation, 103(9), 1194–1197.

    Article  CAS  PubMed  Google Scholar 

  118. Fu, T., & Borensztajn, J. (2002). Macrophage uptake of low-density lipoprotein bound to aggregated C-reactive protein: possible mechanism of foam-cell formation in atherosclerotic lesions. Biochemical Journal, 366(1), 195–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Singh, S. K., Suresh, M. V., Prayther, D. C., Moorman, J. P., Rusiñol, A. E., & Agrawal, A. (2008). C-reactive protein-bound enzymatically modified low-density lipoprotein does not transform macrophages into foam cells. Journal of Immunology (Baltimore, Md.: 1950), 180(6), 4316–4322. https://doi.org/10.4049/jimmunol.180.6.4316.

    Article  CAS  Google Scholar 

  120. Schwedler, S. B., Hansen-Hagge, T., Reichert, M., Schmiedeke, D., Schneider, R., Galle, J., & Filep, J. G. (2009). Monomeric C-reactive protein decreases acetylated LDL uptake in human endothelial cells. Clinical Chemistry, 55(9), 1728–1731.

    Article  CAS  PubMed  Google Scholar 

  121. Filep, J. G. (2009). Platelets affect the structure and function of C-reactive protein. Circulation research, 105(2), 109–111.

  122. Yasojima, K., Schwab, C., McGeer, E. G., & McGeer, P. L. (2001). Generation of C-reactive protein and complement components in atherosclerotic plaques. The American journal of pathology, 158(3), 1039–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Venugopal, S. K., Devaraj, S., & Jialal, I. (2005). Macrophage conditioned medium induces the expression of C-reactive protein in human aortic endothelial cells: potential for paracrine/autocrine effects. The American journal of Pathology, 166(4), 1265–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Vilahur, G., HERNÁNDEZ‐VERA, R., Molins, B., Casaní, L., Duran, X., Padró, T., & Badimon, L. (2009). Short‐term myocardial ischemia induces cardiac modified C‐reactive protein expression and proinflammatory gene (cyclo‐oxygenase‐2, monocyte chemoattractant protein‐1, and tissue factor) upregulation in peripheral blood mononuclear cells. Journal of Thrombosis and Haemostasis, 7(3), 485–493.

    Article  CAS  PubMed  Google Scholar 

  125. Patel, D. N., King, C. A., Bailey, S. R., Holt, J. W., Venkatachalam, K., Agrawal, A., & Chandrasekar, B. (2007). Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-κB and C/EBPβ activation. Journal of Biological Chemistry, 282(37), 27229–27238.

    Article  CAS  PubMed  Google Scholar 

  126. Jabs, W. J., Theissing, E., Nitschke, M., Bechtel, J. F. M., Duchrow, M., Mohamed, S., & Bartels, C. (2003). Local generation of C-reactive protein in diseased coronary artery venous bypass grafts and normal vascular tissue. Circulation, 108(12), 1428–1431.

    Article  CAS  PubMed  Google Scholar 

  127. Caprio, V., Badimon, L., Di Napoli, M., Fang, W.-H., Ferris, G. R., Guo, B., & Slevin, M. (2018). pCRP-mCRP dissociation mechanisms as potential targets for the development of small-molecule anti-inflammatory chemotherapeutics. Frontiers in Immunology, 9, 1089.

    Google Scholar 

  128. Pepys, M. B., Hirschfield, G. M., Tennent, G. A., Gallimore, J. R., Kahan, M. C., Bellotti, V., & Polara, A. (2006). Targeting C-reactive protein for the treatment of cardiovascular disease. Nature, 440(7088), 1217–1221.

    Article  CAS  PubMed  Google Scholar 

  129. Pepys, M. B., & Hirschfield, G. M. (2003). C-reactive protein: a critical update. The Journal of Clinical Investigation, 111(12), 1805–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, H.-W., & Sui, S. (2001). Dissociation and subunit rearrangement of membrane-bound human C-reactive proteins. Biochemical and Biophysical Research Communications, 288(1), 75–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We want to acknowledge the National Natural Science Foundation of China.

Funding

This work was supported by grants from the National Natural Science Foundation of China (NSFC) project no (31870767).

Author information

Authors and Affiliations

Authors

Contributions

Yi Wu and Naeem Ullah had the idea for the article. The literature search and the first draft of the manuscript were written by Naeem Ullah and Yi Wu critically revised the work for intellectual content. Both authors approved the final version to be published.

Corresponding author

Correspondence to Yi Wu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Informed Consent

Consent for publication: On behalf of both authors, the corresponding author declares that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere. He declares the manuscript has been read and approved by both authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, N., Wu, Y. Regulation of Conformational Changes in C-reactive Protein Alters its Bioactivity. Cell Biochem Biophys 80, 595–608 (2022). https://doi.org/10.1007/s12013-022-01089-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-022-01089-x

Keywords

Navigation