Skip to main content
Log in

Comparison of synthetic ceramic products formulated with autologous blood coagulum containing rhBMP6 for induction of bone formation

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Osteogrow, an osteoinductive device containing recombinant human Bone Morphogenetic Protein 6 (rhBMP6) in autologous blood coagulum, is a novel therapeutic solution for bone regeneration. This study aimed to evaluate different commercially available calcium phosphate synthetic ceramic particles as a compression-resistant matrix (CRM) added to Osteogrow implants to enhance their biomechanical properties.

Methods

Osteogrow implants with the addition of Vitoss, ChronOs, BAM, and Dongbo ceramics (Osteogrow-C, where C stands for ceramics) were evaluated in the rodent subcutaneous ectopic bone formation assay. Osteogrow-C device was prepared as follows: rhBMP6 was added to blood, and blood was mixed with ceramics and left to coagulate. Osteogrow-C was implanted subcutaneously in the axillary region of Sprague–Dawley rats and the outcome was analyzed 21 days following implantation using microCT, histology, morphometric analyses, and immunohistochemistry.

Results

Osteogrow-C implants with all tested ceramic particles induced the formation of the bone-ceramic structure containing cortical bone, the bone between the particles, and bone at the ceramic surfaces. The amount of newly formed bone was significant in all experimental groups; however, the highest bone volume was measured in Osteogrow-C implants with highly porous Vitoss ceramics. The trabecular number was highest in Osteogrow-C implants with Vitoss and ChronOs ceramics while trabeculae were thicker in implants containing BAM and Dongbo ceramics. The immunological response and inflammation were comparable among ceramic particles evaluated in this study.

Conclusion

Osteogrow-C bone regenerative device was effective with a broad range of commercially available synthetic ceramics providing a promising therapeutic solution for the regeneration of long bone fracture nonunion, large segmental defects, and spinal fusion surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Raw data were generated at the Laboratory for Mineralized Tissues. Derived data supporting the findings of this study are available from the corresponding author, S.V., upon request.

References

  1. Vukicevic S, Oppermann H, Verbanac D, Jankolija M, Popek I, Curak J, Brkljacic J, Pauk M, Erjavec I, Francetic I, Dumic-Cule I, Jelic M, Durdevic D, Vlahovic T, Novak R, Kufner V, Bordukalo Niksic T, Kozlovic M, Banic Tomisic Z, Bubic-Spoljar J, Bastalic I, Vikic-Topic S, Peric M, Pecina M, Grgurevic L (2014) The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing. Int Orthop 38:635–647. https://doi.org/10.1007/s00264-013-2201-1

    Article  PubMed  Google Scholar 

  2. Vukicevic S, Grgurevic L, Erjavec I, Pecin M, Bordukalo-Niksic T, Stokovic N, Lipar M, Capak H, Maticic D, Windhager R, Sampath TK, Gupta M (2020) Autologous blood coagulum is a physiological carrier for BMP6 to induce new bone formation and promote posterolateral lumbar spine fusion in rabbits. J Tissue Eng Regen Med 14:147–159. https://doi.org/10.1002/term.2981

    Article  CAS  PubMed  Google Scholar 

  3. Grgurevic L, Oppermann H, Pecin M, Erjavec I, Capak H, Pauk M, Karlovic S, Kufner V, Lipar M, Bubic Spoljar J, Bordukalo-Niksic T, Maticic D, Peric M, Windhager R, Sampath TK, Vukicevic S (2019) Recombinant human bone morphogenetic protein 6 delivered within autologous blood coagulum restores critical size segmental defects of ulna in rabbits. JBMR Plus 3:e10085. https://doi.org/10.1002/jbm4.10085

    Article  CAS  PubMed  Google Scholar 

  4. Grgurevic L, Erjavec I, Gupta M, Pecin M, Bordukalo-Niksic T, Stokovic N, Vnuk D, Farkas V, Capak H, Milosevic M, Spoljar JB, Peric M, Vuckovic M, Maticic D, Windhager R, Oppermann H, Sampath TK, Vukicevic S (2020) Autologous blood coagulum containing rhBMP6 induces new bone formation to promote anterior lumbar interbody fusion (ALIF) and posterolateral lumbar fusion (PLF) of spine in sheep. Bone 138:115448. https://doi.org/10.1016/j.bone.2020.115448

    Article  CAS  PubMed  Google Scholar 

  5. Chiari C, Grgurevic L, Bordukalo-Niksic T, Oppermann H, Valentinitsch A, Nemecek E, Staats K, Schreiner M, Trost C, Kolb A, Kainberger F, Pehar S, Milosevic M, Martinovic S, Peric M, Sampath TK, Vukicevic S, Windhager R (2020) Recombinant human BMP6 applied within autologous blood coagulum accelerates bone healing: randomized controlled trial in high tibial osteotomy patients. J Bone Miner Res 35:1893–1903. https://doi.org/10.1002/jbmr.4107

    Article  CAS  PubMed  Google Scholar 

  6. Durdevic D, Vlahovic T, Pehar S, Miklic D, Oppermann H, Bordukalo-Niksic T, Gavrankapetanovic I, Jamakosmanovic M, Milosevic M, Martinovic S, Sampath TK, Peric M, Grgurevic L, Vukicevic S (2020) A novel autologous bone graft substitute comprised of rhBMP6 blood coagulum as carrier tested in a randomized and controlled Phase I trial in patients with distal radial fractures. Bone 140:115551. https://doi.org/10.1016/j.bone.2020.115551

    Article  CAS  PubMed  Google Scholar 

  7. Stokovic N, Ivanjko N, Erjavec I, Milosevic M, Oppermann H, Shimp L, Sampath KT, Vukicevic S (2020) Autologous bone graft substitute containing rhBMP6 within autologous blood coagulum and synthetic ceramics of different particle size determines the quantity and structural pattern of bone formed in a rat subcutaneous assay. Bone 141:115654. https://doi.org/10.1016/j.bone.2020.115654

    Article  CAS  PubMed  Google Scholar 

  8. Stokovic N, Ivanjko N, Pecin M, Erjavec I, Karlovic S, Smajlovic A, Capak H, Milosevic M, Bubic Spoljar J, Vnuk D, Maticic D, Oppermann H, Sampath TK, Vukicevic S (2020) Evaluation of synthetic ceramics as compression resistant matrix to promote osteogenesis of autologous blood coagulum containing recombinant human bone morphogenetic protein 6 in rabbit posterolateral lumbar fusion model. Bone 140:115544. https://doi.org/10.1016/j.bone.2020.115544

    Article  CAS  PubMed  Google Scholar 

  9. Stokovic N, Ivanjko N, Milesevic M, Matic Jelic I, Bakic K, Rumenovic V, Oppermann H, Shimp L, Sampath TK, Pecina M, Vukicevic S (2020) Synthetic ceramic macroporous blocks as a scaffold in ectopic bone formation induced by recombinant human bone morphogenetic protein 6 within autologous blood coagulum in rats. Int Orthop 45:1097–1107. https://doi.org/10.1007/s00264-020-04847-9

    Article  PubMed  Google Scholar 

  10. Best SM, Porter AE, Thian ES, Huang J (2008) Bioceramics: past, present and for the future. J Eur Ceram Soc 28:1319–1327. https://doi.org/10.1016/j.jeurceramsoc.2007.12.001

    Article  CAS  Google Scholar 

  11. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP (2003) Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med 14:201–209. https://doi.org/10.1023/a:1022872421333

    Article  CAS  PubMed  Google Scholar 

  12. Habraken W, Habibovic P, Epple M, Bohner M (2016) Calcium phosphates in biomedical applications: materials for the future? Mater Today 19:69–87. https://doi.org/10.1016/j.mattod.2015.10.008

    Article  CAS  Google Scholar 

  13. Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485. https://doi.org/10.1016/j.biomaterials.2009.11.050

    Article  CAS  PubMed  Google Scholar 

  14. Alam MI, Asahina I, Ohmamiuda K, Takahashi K, Yokota S, Enomoto S (2001) Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Biomaterials 22:1643–1651. https://doi.org/10.1016/s0142-9612(00)00322-7

    Article  CAS  PubMed  Google Scholar 

  15. El Bialy I, Jiskoot W, Reza Nejadnik M (2017) Formulation, delivery and stability of bone morphogenetic proteins for effective bone regeneration. Pharm Res 34:1152–1170. https://doi.org/10.1007/s11095-017-2147-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seeherman H, Wozney JM (2005) Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine Growth Factor Rev 16:329–345. https://doi.org/10.1016/j.cytogfr.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  17. Haidar ZS, Hamdy RC, Tabrizian M (2009) Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part B: Delivery systems for BMPs in orthopaedic and craniofacial tissue engineering. Biotechnol Lett 31:1825–1835. https://doi.org/10.1007/s10529-009-0100-8

    Article  CAS  PubMed  Google Scholar 

  18. Kato M, Namikawa T, Terai H, Hoshino M, Miyamoto S, Takaoka K (2006) Ectopic bone formation in mice associated with a lactic acid/dioxanone/ethylene glycol copolymer-tricalcium phosphate composite with added recombinant human bone morphogenetic protein-2. Biomaterials 27:3927–3933. https://doi.org/10.1016/j.biomaterials.2006.03.013

    Article  CAS  PubMed  Google Scholar 

  19. Roldan JC, Detsch R, Schaefer S, Chang E, Kelantan M, Waiss W, Reichert TE, Gurtner GC, Deisinger U (2010) Bone formation and degradation of a highly porous biphasic calcium phosphate ceramic in presence of BMP-7, VEGF and mesenchymal stem cells in an ectopic mouse model. J Craniomaxillofac Surg 38:423–430. https://doi.org/10.1016/j.jcms.2010.01.003

    Article  CAS  PubMed  Google Scholar 

  20. Liang G, Yang Y, Oh S, Ong JL, Zheng C, Ran J, Yin G, Zhou D (2005) Ectopic osteoinduction and early degradation of recombinant human bone morphogenetic protein-2-loaded porous beta-tricalcium phosphate in mice. Biomaterials 26:4265–4271. https://doi.org/10.1016/j.biomaterials.2004.10.035

    Article  CAS  PubMed  Google Scholar 

  21. Kuboki Y, Takita H, Kobayashi D, Tsuruga E, Inoue M, Murata M, Nagai N, Dohi Y, Ohgushi H (1998) BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J Biomed Mater Res 39:190–199. https://doi.org/10.1002/(sici)1097-4636(199802)39:2<190::aid-jbm4>3.0.co;2-k

    Article  CAS  PubMed  Google Scholar 

  22. Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y (1997) Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem 121:317–324. https://doi.org/10.1093/oxfordjournals.jbchem.a021589

    Article  CAS  PubMed  Google Scholar 

  23. Jung UW, Choi SY, Pang EK, Kim CS, Choi SH, Cho KS (2006) The effect of varying the particle size of beta tricalcium phosphate carrier of recombinant human bone morphogenetic protein-4 on bone formation in rat calvarial defects. J Periodontol 77:765–772. https://doi.org/10.1902/jop.2006.050268

    Article  CAS  PubMed  Google Scholar 

  24. Kim JW, Choi KH, Yun JH, Jung UW, Kim CS, Choi SH, Cho KS (2011) Bone formation of block and particulated biphasic calcium phosphate lyophilized with Escherichia coli-derived recombinant human bone morphogenetic protein 2 in rat calvarial defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112:298–306. https://doi.org/10.1016/j.tripleo.2010.10.025

    Article  PubMed  Google Scholar 

  25. Pelletier MH, Oliver RA, Christou C, Yu Y, Bertollo N, Irie H, Walsh WR (2014) Lumbar spinal fusion with beta-TCP granules and variable Escherichia coli-derived rhBMP-2 dose. Spine J 14:1758–1768. https://doi.org/10.1016/j.spinee.2014.01.043

    Article  PubMed  Google Scholar 

  26. Toth JM, Wang M, Lawson J, Badura JM, DuBose KB (2016) Radiographic, biomechanical, and histological evaluation of rhBMP-2 in a 3-level intertransverse process spine fusion: an ovine study. J Neurosurg Spine 25:733–739. https://doi.org/10.3171/2016.4.SPINE151316

    Article  PubMed  Google Scholar 

  27. Suh DY, Boden SD, Louis-Ugbo J, Mayr M, Murakami H, Kim HS, Minamide A, Hutton WC (2002) Delivery of recombinant human bone morphogenetic protein-2 using a compression-resistant matrix in posterolateral spine fusion in the rabbit and in the non-human primate. Spine (Phila Pa 1976) 27:353–360. https://doi.org/10.1097/00007632-200202150-00006

    Article  Google Scholar 

  28. Akamaru T, Suh D, Boden SD, Kim HS, Minamide A, Louis-Ugbo J (2003) Simple carrier matrix modifications can enhance delivery of recombinant human bone morphogenetic protein-2 for posterolateral spine fusion. Spine (Phila Pa 1976) 28:429–434. https://doi.org/10.1097/01.BRS.0000048644.91330.14

    Article  Google Scholar 

  29. Vukicevic S, Stokovic N, Pecina M (2019) Is ceramics an appropriate bone morphogenetic protein delivery system for clinical use? Int Orthop 43:1275–1276. https://doi.org/10.1007/s00264-019-04322-0

    Article  PubMed  Google Scholar 

  30. Kuroiwa Y, Niikura T, Lee SY, Oe K, Iwakura T, Fukui T, Matsumoto T, Matsushita T, Nishida K, Kuroda R (2019) Escherichia coli-derived BMP-2-absorbed beta-TCP granules induce bone regeneration in rabbit critical-sized femoral segmental defects. Int Orthop 43:1247–1253. https://doi.org/10.1007/s00264-018-4079-4

    Article  PubMed  Google Scholar 

  31. Stokovic N, Ivanjko N, Erjavec I, Breski A, Peric M, Vukicevic S (2021) Zoledronate bound to ceramics increases ectopic bone volume induced by rhBMP6 delivered in autologous blood coagulum in rats. Biomed 9.https://doi.org/10.3390/biomedicines9101487

  32. Stokovic N, Ivanjko N, Pecin M, Erjavec I, Smajlovic A, Milesevic M, Karlovic S, Capak H, Vrbanac Z, Maticic D, Vukicevic S (2022) Long-term posterolateral spinal fusion in rabbits induced by rhBMP6 applied in autologous blood coagulum with synthetic ceramics. Sci Rep 12:11649. https://doi.org/10.1038/s41598-022-14931-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stokovic N, Ivanjko N, Maticic D, Luyten FP, Vukicevic S (2021) Bone morphogenetic proteins, carriers, and animal models in the development of novel bone regenerative therapies. Materials 14:3513. https://doi.org/10.3390/ma14133513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peric M, Dumic-Cule I, Grcevic D, Matijasic M, Verbanac D, Paul R, Grgurevic L, Trkulja V, Bagi CM, Vukicevic S (2015) The rational use of animal models in the evaluation of novel bone regenerative therapies. Bone 70:73–86. https://doi.org/10.1016/j.bone.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  35. Dumic-Cule I, Pecina M, Jelic M, Jankolija M, Popek I, Grgurevic L, Vukicevic S (2015) Biological aspects of segmental bone defects management. Int Orthop 39:1005–1011. https://doi.org/10.1007/s00264-015-2728-4

    Article  PubMed  Google Scholar 

  36. Grgurevic L, Pecina M, Vukicevic S (2017) Marshall R. Urist and the discovery of bone morphogenetic proteins. Int Orthop 41:1065–1069. https://doi.org/10.1007/s00264-017-3402-9

    Article  PubMed  Google Scholar 

  37. Dumic-Cule I, Peric M, Kucko L, Grgurevic L, Pecina M, Vukicevic S (2018) Bone morphogenetic proteins in fracture repair. Int Orthop 42:2619–2626. https://doi.org/10.1007/s00264-018-4153-y

    Article  PubMed  Google Scholar 

  38. Vukicevic S, Peric M, Oppermann H, Stokovic N, Ivanjko N, Erjavec I, Kufner V, Vnuk D, BubicSpoljar J, Pecin M, Novak R, MaticJelic I, Bakic K, Milesevic M, Rumenovic V, Popek I, Pehar S, Martinovic S, Blazevic V, Rogina L, Vikic-Topic S, Bozic T, Verbanac D, BordukaloNiksic T, Sampath K, Pecina M, Maticic D, Grgurevic L (2020) Bone morphogenetic proteins: From discovery to development of a novel autologous bone graft substitute consisting of recombinant human BMP6 delivered in autologous blood coagulum carrier. Rad CASA - Med Sci 544:26–41. https://doi.org/10.21857/mnlqgc5vgy

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Stryker Corporation (Kalamazoo, Minessota, USA) for providing Vitoss ceramic particles evaluated in this study. We thank to Mirjana Marija Renic and Djurdjica Car for their excellent technical assistance in animal experiments and excellent preparation of histology sections.

Funding

This research was funded by the FP7 Health Program (FP7/2007–2013) under grant agreement HEALTH-F4-2011–279239 (Osteogrow), H2020 Health GA 779340 (OSTEOproSPINE), and European Regional Development Fund—Scientific Center of Excellence for Reproductive and Regenerative Medicine (project “Reproductive and regenerative medicine—exploration of new platforms and potentials,” GA KK.01.1.1.01.0008 funded by the EU through the ERDF).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by NI, NS, VR, and AB. The first draft of the manuscript was written by NS and SV, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Slobodan Vukicevic.

Ethics declarations

Ethics approval

Study has received ethics approval from the Ethics Committee at School of Medicine, University of Zagreb and the Croatian National Ethics Committee (EP 191/2019 and EP 296/2020).

Animal care complied with the SOPs of the Animal Facility and the European conventions for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (ETS 123). The ethical principles of the study ensured compliance with European Directive 010/63/E, the Law on Amendments to Animal Protection Act (Official Gazette 37/13, the Animal Protection Act (Official Gazette 102/17), the Ordinance on the Protection of Animals used for Scientific Purposes (Official Gazette 55/13), and FELASA recommendations.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

Slobodan Vukicevic is a founder of Genera Research and a coordinator of the EU HORIZON 2020 grant OSTEOproSPINE, funding clinical studies for new bone repair drugs (patent WO2019076484A1).

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stokovic, N., Ivanjko, N., Rumenovic, V. et al. Comparison of synthetic ceramic products formulated with autologous blood coagulum containing rhBMP6 for induction of bone formation. International Orthopaedics (SICOT) 46, 2693–2704 (2022). https://doi.org/10.1007/s00264-022-05546-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-022-05546-3

Keywords

Navigation