Skip to main content

Advertisement

Log in

WDR74 facilitates TGF-β/Smad pathway activation to promote M2 macrophage polarization and diabetic foot ulcer wound healing in mice

  • Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Diabetic foot ulcer (DFU) is a devastating component of diabetes progression, leading to decreased quality of life and increased mortality in diabetic patients. The underlying mechanism of DFU is not completely understood. Hence, this study aims to elucidate the mechanism involved in wound healing in mouse models of DFU. Gain- and loss-of-function studies were performed to study the roles that WDR74 and TGF-β play in mouse models of DFU and primary bone marrow–derived mouse macrophages. M1 and M2 macrophage phenotypic markers, extracellular matrix (ECM) components, and angiogenic makers were determined by RT-qPCR and/or Western blot analysis. Localization of these proteins was determined by immunofluorescence staining and/or immunohistochemistry. Interaction between WDR74 with Smad2/3 in macrophages was detected by co-immunoprecipitation. We found that WDR74 and M2 macrophages were decreased in wound tissues from DFU mice. TGF-β/Smad pathway activation increased the expression of M2 macrophage markers (arginase-1 and YM1), IL-4, while decreased expression of M1 macrophage marker (iNOS). TGF-β/Smad pathway activation also increased the production of ECM and promoted the wound closure in diabetic mice. We also noticed that WDR74 overexpression increased Smad2/3 phosphorylation, elevated the population of M2 macrophage and ECM production, and alleviated DFU. LY2109761 treatment normalized effects of TGF-β or WDR74 overexpression. In conclusion, WDR74 promoted M2 macrophage polarization, leading to improved DFU in mice, through activation of the TGF-β/Smad pathway.

Graphical abstract

Graphical Headlights

1. WDR74 promotes M2 macrophage polarization and ECM production.

2. WDR74 activates the TGF-β/Smad signaling pathway.

3. TGF-β/Smad activation promotes M2 macrophage polarization in murine DFU.

4. WDR74 enhances wound healing in murine DFU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All datasets generated for this study are included in the article/Supplementary Material.

Code availability

Not applicable.

References

  • Aambo A, Klemsdal TO. Cardiovascular disease and diabetes in patients with African or Asian background. Tidsskr Nor Laegeforen. 2017;137(22)

  • Akhurst RJ, Derynck R. TGF-beta signaling in cancer–a double-edged sword. Trends Cell Biol. 2001;11(11):S44-51.

    Article  CAS  PubMed  Google Scholar 

  • Al-Mulla F, Leibovich SJ, Francis IM, Bitar MS. Impaired TGF-beta signaling and a defect in resolution of inflammation contribute to delayed wound healing in a female rat model of type 2 diabetes. Mol Biosyst. 2011;7(11):3006–20.

    Article  CAS  PubMed  Google Scholar 

  • Awad F, Assrawi E, Jumeau C, Georgin-Lavialle S, Cobret L, Duquesnoy P, et al. Impact of human monocyte and macrophage polarization on NLR expression and NLRP3 inflammasome activation. PLoS One. 2017;12(4):e0175336.

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa Franco MM, Marim F, Guimaraes ES, Assis NRG, Cerqueira DM, Alves-Silva J, et al. Brucella abortus triggers a cGAS-independent STING pathway to induce host protection that involves guanylate-binding proteins and inflammasome activation. J Immunol. 2018;200(2):607–22.

    Article  CAS  PubMed  Google Scholar 

  • Dietrich I, Braga GA, de Melo FG, da Costa Silva Silva ACC. The diabetic foot as a proxy for cardiovascular events and mortality review. Curr Atheroscler Rep. 2017;19(11):44.

    Article  PubMed  Google Scholar 

  • El Gazaerly H, Elbardisey DM, Eltokhy HM, Teaama D. Effect of transforming growth factor Beta 1 on wound healing in induced diabetic rats. Int J Health Sci (qassim). 2013;7(2):160–72.

    PubMed  Google Scholar 

  • Fabregat I, Fernando J, Mainez J, Sancho P. TGF-beta signaling in cancer treatment. Curr Pharm Des. 2014;20(17):2934–47.

    Article  CAS  PubMed  Google Scholar 

  • Ferrante CJ, Leibovich SJ. Regulation of macrophage polarization and wound healing. Adv Wound Care (new Rochelle). 2012;1(1):10–6.

    Article  PubMed  Google Scholar 

  • Geng K, Ma X, Jiang Z, Huang W, Gao C, Pu Y, Luo L, Xu Y, Xu Y. Innate immunity in diabetic wound healing: focus on the mastermind hidden in chronic inflammatory. Front Pharmacol. 2021;21(12):653940.

    Article  Google Scholar 

  • Gingery A, Bradley EW, Pederson L, Ruan M, Horwood NJ, Oursler MJ. TGF-beta coordinately activates TAK1/MEK/AKT/NFkB and SMAD pathways to promote osteoclast survival. Exp Cell Res. 2008;314(15):2725–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill MD. Stroke and diabetes mellitus. Handb Clin Neurol. 2014;126:167–74.

    Article  PubMed  Google Scholar 

  • Hozzein WN, Badr G, Al Ghamdi AA, Sayed A, Al-Waili NS, Garraud O. Topical application of propolis enhances cutaneous wound healing by promoting TGF-beta/Smad-mediated collagen production in a streptozotocin-induced type I diabetic mouse model. Cell Physiol Biochem. 2015;37(3):940–54.

    Article  CAS  PubMed  Google Scholar 

  • Hu G, Su Y, Kang BH, Fan Z, Dong T, Brown DR, et al. High-throughput phenotypic screen and transcriptional analysis identify new compounds and targets for macrophage reprogramming. Nat Commun. 2021;12(1):773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev. 2006;25(3):435–57.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Ran X, Jia L, Yang C, Wang P, Ma J, et al. Epidemiology of type 2 diabetic foot problems and predictive factors for amputation in China. Int J Low Extrem Wounds. 2015a;14(1):19–27.

    Article  PubMed  Google Scholar 

  • Jiang Y, Wang X, Xia L, Fu X, Xu Z, Ran X, et al. A cohort study of diabetic patients and diabetic foot ulceration patients in China. Wound Repair Regen. 2015b;23(2):222–30.

    Article  PubMed  Google Scholar 

  • Kim TH, Cho HY, Lee SM. High-voltage pulsed current stimulation enhances wound healing in diabetic rats by restoring the expression of collagen, alpha-smooth muscle actin, and TGF-beta1. Tohoku J Exp Med. 2014;234(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  • Krol M, Polanska J, Pawlowski KM, Turowski P, Skierski J, Majewska A, et al. Transcriptomic signature of cell lines isolated from canine mammary adenocarcinoma metastases to lungs. J Appl Genet. 2010;51(1):37–50.

    Article  CAS  PubMed  Google Scholar 

  • Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. 2018;9:419.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leal EC, Carvalho E, Tellechea A, Kafanas A, Tecilazich F, Kearney C, et al. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype. Am J Pathol. 2015;185(6):1638–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99–146.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Xiao T, Wang Y, Gu H, Liu Z, Jiang Y, et al. Incidence, risk factors for amputation among patients with diabetic foot ulcer in a Chinese tertiary hospital. Diabetes Res Clin Pract. 2011;93(1):26–30.

    Article  PubMed  Google Scholar 

  • Lichtman MK, Otero-Vinas M, Falanga V. Transforming growth factor beta (TGF-beta) isoforms in wound healing and fibrosis. Wound Repair Regen. 2016;24(2):215–22.

    Article  PubMed  Google Scholar 

  • Liu YC, Zou XB, Chai YF, Yao YM. Macrophage polarization in inflammatory diseases. Int J Biol Sci. 2014;10(5):520–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhao M, Yuan B, Gu S, Zheng M, Zou J, et al. WDR74 functions as a novel coactivator in TGF-beta signaling. J Genet Genomics. 2018;45(12):639–50.

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  • Luong VH, Chino T, Oyama N, Matsushita T, Sasaki Y, Ogura D, et al. Blockade of TGF-beta/Smad signaling by the small compound HPH-15 ameliorates experimental skin fibrosis. Arthritis Res Ther. 2018;20(1):46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229(2):176–85.

    Article  CAS  PubMed  Google Scholar 

  • Maric-Bilkan C. Sex differences in micro- and macro-vascular complications of diabetes mellitus. Clin Sci (lond). 2017;131(9):833–46.

    Article  CAS  PubMed  Google Scholar 

  • Marti-Carvajal AJ, Gluud C, Nicola S, Simancas-Racines D, Reveiz L, Oliva P, et al. Growth factors for treating diabetic foot ulcers. Cochrane Database Syst Rev. 2015;(10):CD008548

  • Martin GR, Blomquist CM, Henare KL, Jirik FR. Stimulator of interferon genes (STING) activation exacerbates experimental colitis in mice. Sci Rep. 2019;9(1):14281.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paterson AD, Waggott D, Boright AP, Hosseini SM, Shen E, Sylvestre MP, et al. A genome-wide association study identifies a novel major locus for glycemic control in type 1 diabetes, as measured by both A1C and glucose. Diabetes. 2010;59(2):539–49.

    Article  CAS  PubMed  Google Scholar 

  • Pokharel SM, Shil NK, Bose S. Autophagy, TGF-beta, and SMAD-2/3 signaling regulates interferon-beta response in respiratory syncytial virus infected macrophages. Front Cell Infect Microbiol. 2016;6:174.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raimondo TM, Mooney DJ. Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice. Proc Natl Acad Sci U S A. 2018;115(42):10648–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40.

    Article  CAS  PubMed  Google Scholar 

  • Shin JJ, Lee EK, Park TJ, Kim W. Damage-associated molecular patterns and their pathological relevance in diabetes mellitus. Ageing Res Rev. 2015;24(Pt A):66–76.

    Article  CAS  PubMed  Google Scholar 

  • Spiller KL, Koh TJ. Macrophage-based therapeutic strategies in regenerative medicine. Adv Drug Deliv Rev. 2017;122:74–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Bao Z, Ji Y, Mei X, Yang H. Epigallocatechin-3-gallate protects H2O2-induced nucleus pulposus cell apoptosis and inflammation by inhibiting cGAS/Sting/NLRP3 activation. Drug Des Devel Ther. 2020;14:2113–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker DG, Lue LF. Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res Ther. 2015;7(1):56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Wang X, Chun J, Vilaysane A, Clark S, French G, et al. Inflammasome-independent NLRP3 augments TGF-beta signaling in kidney epithelium. J Immunol. 2013;190(3):1239–49.

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1–m2 polarization balance. Front Immunol. 2014;5:614.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinhold N, Jacobsen A, Schultz N, Sander C, Lee W. Genome-wide analysis of noncoding regulatory mutations in cancer. Nat Genet. 2014;46(11):1160–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson HN, Roberts ER, Stafford AR, Banyard KL, Matteucci P, Mace KA, et al. Tissue Iron Promotes Wound Repair via M2 Macrophage Polarization and the Chemokine (C-C Motif) Ligands 17 and 22. Am J Pathol. 2019;189(11):2196–208.

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Chen J, Wang C, Yuan M, Kang Y, Wu Z, et al. Milk exosomes-mediated miR-31-5p delivery accelerates diabetic wound healing through promoting angiogenesis. Drug Deliv. 2022;29(1):214–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Yin S, Bi F, Liu L, Qin T, Wang H, et al. TIMAP repression by TGFbeta and HDAC3-associated Smad signaling regulates macrophage M2 phenotypic phagocytosis. J Mol Med (berl). 2017;95(3):273–85.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Guan M, Xie C, Luo X, Zhang Q, Xue Y. Increased growth factors play a role in wound healing promoted by noninvasive oxygen-ozone therapy in diabetic patients with foot ulcers. Oxid Med Cell Longev. 2014;2014:273475.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Wang H, Wang X, Jiang G, Liu H, Zhang G, et al. TGF-beta induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget. 2016;7(32):52294–306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Dai J, Li L, Chen H, Chai Y. NLRP3 inflammasome expression and signaling in human diabetic wounds and in high glucose induced macrophages. J Diabetes Res. 2017;2017:5281358.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Sun Z, Pei J, Luo Q, Zeng X, Li Q, et al. Identification of alpha-mangostin as an agonist of human STING. ChemMedChem. 2018;13(19):2057–64.

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Fu X, Chen X, Han X, Dong P. M2 macrophages induce EMT through the TGF-beta/Smad2 signaling pathway. Cell Biol Int. 2017;41(9):960–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by grants from the National Natural Science Foundation of China (Nos. 81970676 and NO.82170834), the Science and Technology Development Fund of Macau (No. 0055/2019/AMJ), the Office of Science & Technology and Talent Work of Luzhou (No. 2019-JYJ-63), and the Innovation Seedling Project of Sichuan Provincial Department of Science and Technology (No. 2022095).

Author information

Authors and Affiliations

Authors

Contributions

Youhua Xu provided the scope of the research and conceived the manuscript structure. Kang Geng and Xiumei Ma oversaw the writing of the manuscript and drafted the final version of the manuscript. Zongzhe Jiang, Huang Wei, Junling Gu, and Weiming Wang were involved in data collection. Xiumei Ma and Yong Xu performed the statistical analysis and preparation of the Figures. Kang Geng and Youhua Xu drafted the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yong Xu or Youhua Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All mice were maintained in the pathogen-free animal facility and all animal studies were approved by the Institutional Animal Care and Use Committee at The Affiliated Hospital of Southwest Medical University.

Consent to participate

Informed consent was obtained where applicable.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 1816 KB)

Supplementary file2 (JPG 1795 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, K., Ma, X., Jiang, Z. et al. WDR74 facilitates TGF-β/Smad pathway activation to promote M2 macrophage polarization and diabetic foot ulcer wound healing in mice. Cell Biol Toxicol 39, 1577–1591 (2023). https://doi.org/10.1007/s10565-022-09748-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-022-09748-8

Keywords

Navigation