Skip to main content
Log in

Investigation of Tribological Behavior of Plasma Sprayed NiTi Coating for Aerospace Application

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In the absence of any literature regarding the development of erosion resistance protective coatings on the aerospace engine parts using NiTi alloy, the current work has been focused on the detail investigation of the solid particle erosion resistance of the NiTi coating developed by atmospheric plasma spray technique. The coating has been prepared by considering an elemental mixture of equiatomic Ni and Ti powder as feedstock material with different plasma arc currents and primary gas flow rates. The quality of the coatings has been checked by different characterization techniques like x-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy. The defects observed from the microstructural investigation sometimes lead to more erosion and sometimes resulted in less erosion rate. The investigation of the effect of the porosity percentage on the erosion rate revealed that as the porosity percentage increases, the erosion rate increases at both 45° and 90° erodent impingement angles due to the lack in strength at the edges of the pores. Furthermore, the surface area of the roughness peaks, the stress concentration at the gap between the roughness peaks and height of the surface profile are mainly responsible for the erosion performance at both the erodent impact angles. The erosion rate is inversely proportional to the microhardness of the coatings. In addition to the above, according to the results disclosed by the erosion performance at different impingement angles, the coating is brittle in nature. The surface morphological study of the eroded coatings indicated various erosion mechanisms like plastic deformation, plowing, microcutting, lip formation, scratches, groove formation on the coatings impinged at 45° impact angle and groove formation, splat fracture, splat fragmentation, splat delamination, pit formation on the coatings impinged at 90° impingement angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. M. Pepi, R. Squillacioti, L. Pfledderer and A. Phelps, Solid Particle Erosion Testing of Helicopter Rotor Blade Materials, J. Fail. Anal. Prev., 2012, 12(1), p 96-108. https://doi.org/10.1007/s11668-011-9531-3

    Article  Google Scholar 

  2. J. Alqallaf, N. Ali, J.A. Teixeira and A. Addali, Solid Particle Erosion Behaviour and Protective Coatings for Gas Turbine Compressor Blades-A Review, Processes, 2020, 8(8), p 984. https://doi.org/10.3390/pr8080984

    Article  CAS  Google Scholar 

  3. B. Swain, P. Mallick, S. Patel, R. Roshan, S.S. Mohapatra, S. Bhuyan, M. Priyadarshini, B. Behera, S. Samal and A. Behera, Failure Analysis and Materials Development of Gas Turbine Blades, Mater. Today Proc., 2020 https://doi.org/10.1016/j.matpr.2020.02.859

    Article  Google Scholar 

  4. J.R. Laguna-camacho, L.Y. Villagrán-villegas, H. Martínez-garcía and G. Juárez-morales, A Study of the Wear Damage on Gas Turbine Blades, EFA, 2016, 61, p 88-99. https://doi.org/10.1016/j.engfailanal.2015.10.002

    Article  CAS  Google Scholar 

  5. A.A. Hamed, W. Tabakoff, R.B. Rivir, K. Das and P. Arora, Turbine Blade Surface Deterioration by Erosion, J. Turbomach., 2005, 127(3), p 445. https://doi.org/10.1115/1.1860376

    Article  Google Scholar 

  6. S. Benterki, A. Faci and N. Bouaouadja, A Windshields Surface Characterization Damaged by Sandblasting, Int. J. Appl. Glas. Sci., 2020, 11(2), p 245-252. https://doi.org/10.1111/ijag.14584

    Article  Google Scholar 

  7. R.C. Sirs, “The Operation of Gas Turbine Engines in Hot & Sandy Conditions-Royal Air Force Experiences in the Gulf War,” in: AGARD Conference Proceedings, 1994, p 2-1

  8. M. Selinger, “Pratt & Whitney Modifying Lead Engine for JSF,”(2007) http://www.aviationweek.com

  9. S. Kumar Patel, B. Swain, R. Roshan, N.K. Sahu and A. Behera, A Brief Review of Shape Memory Effects and Fabrication Processes of NiTi Shape Memory Alloys, Mater. Today Proc., 2020, 33, p 5552-5556. https://doi.org/10.1016/j.matpr.2020.03.539

    Article  CAS  Google Scholar 

  10. S.K. Patel, B. Behera, B. Swain, R. Roshan, D. Sahoo and A. Behera, A Review on NiTi Alloys for Biomedical Applications and Their Biocompatibility, Mater. Today Proc., 2020, 33, p 5548-5551. https://doi.org/10.1016/j.matpr.2020.03.538

    Article  CAS  Google Scholar 

  11. Y. Oshida and S. Miyazaki, Corrosion and Biocompatibility of Shape Memory Alloys, Zairyo-to-Kankyo, 1991, 40(12), p 834-844. https://doi.org/10.3323/jcorr1991.40.834

    Article  CAS  Google Scholar 

  12. P. Clayton, Tribological Behavior of a Titanium-Nickel Alloy, Wear, 1993, 162-164, p 202-210. https://doi.org/10.1016/0043-1648(93)90502-D

    Article  CAS  Google Scholar 

  13. H.C. Lin, H.M. Liao, J.L. He, K.C. Chen and K.M. Lin, Wear Characteristics of TiNi Shape Memory Alloys, Metall. Mater. Trans. A, 2000, 28(9), p 1871-1877.

    Article  Google Scholar 

  14. Y. Shida and Y. Sugimoto, Water Jet Erosion Behaviour of Ti-Ni Binary Alloys, Wear, 1991, 146(2), p 219-228.

    Article  CAS  Google Scholar 

  15. A.P. Jardine, Y. Field and H. Herman, Shape Memory Effect in Vacuum Plasma Sprayed NiTi, J. Mater. Sci. Lett., 1991, 10(16), p 943-945. https://doi.org/10.1007/BF00722140

    Article  CAS  Google Scholar 

  16. H.C. Lin, S.K. Wu and M.T. Yeh, Damping Characteristics of TiNi Shape Memory Alloys, Metall. Trans. A, 1993, 24(10), p 2189-2194. https://doi.org/10.1007/BF02648593

    Article  Google Scholar 

  17. K. Melton and O. Mercier, Fatigue of NITI Thermoelastic Martensites, Acta Metall., 1979, 27(1), p 137-144. https://doi.org/10.1016/0001-6160(79)90065-8

    Article  CAS  Google Scholar 

  18. R. Westergård, L.C. Erickson, N. Axén, H.M. Hawthorne and S. Hogmark, The Erosion and Abrasion Characteristics of Alumina Coatings Plasma Sprayed under Different Spraying Conditions, Tribol. Int., 1998, 31(5), p 271-279.

    Article  Google Scholar 

  19. D. Toma, W. Brandl and G. Marginean, Wear and Corrosion Behaviour of Thermally Sprayed Cermet Coatings, Surf. Coat. Technol., 2001, 138(2-3), p 149-158.

    Article  CAS  Google Scholar 

  20. Y. Fu, A.W. Batchelor, Y. Wang and K.A. Khor, Fretting Wear Behaviors of Thermal Sprayed Hydroxyapatite (HA) Coating under Unlubricated Conditions, Wear, 1998, 217(1), p 132-139.

    Article  CAS  Google Scholar 

  21. H. Liao, B. Normand and C. Coddet, Influence of Coating Microstructure on the Abrasive Wear Resistance of WC/Co Cermet Coatings, Surf. Coat. Technol., 2000, 124(2-3), p 235-242.

    Article  CAS  Google Scholar 

  22. B. Swain and A. Behera, Effect of Powder Feed Rate on Adhesion Strength and Microhardness of APS NiTi Coating: A Microstructural Investigation, Surf. Topogr. Metrol. Prop., 2021, 9(2), p 025039. https://doi.org/10.1088/2051-672X/ac0a38

    Article  CAS  Google Scholar 

  23. P. Mallick, B. Behera, S.K. Patel, B. Swain, R. Roshan and A. Behera, Plasma Spray Parameters to Optimize the Properties of Abrasion Coating Used in Axial Flow Compressors of Aero-Engines to Maintain Blade Tip Clearance, Mater. Today Proc., 2020, 33, p 5691-5697. https://doi.org/10.1016/j.matpr.2020.03.835

    Article  CAS  Google Scholar 

  24. S. Sampath, U. Schulz, M.O. Jarligo and S. Kuroda, Processing Science of Advanced Thermal-Barrier Systems, MRS Bull., 2012, 37(10), p 903-910.

    Article  CAS  Google Scholar 

  25. B. Swain, S. Bhuyan, R. Behera, S.S. Mohapatra and A. Behera, Wear: A Serious Problem in Industry, Tribology in Materials and Manufacturing-Wear, Friction and Lubrication. A. Patnaik, T. Singh, V. Kukshal Ed., IntechOpen, London, 2021. https://doi.org/10.5772/intechopen.94211

    Chapter  Google Scholar 

  26. H. Herman, Plasma-Sprayed Coatings, Sci. Am., 1988, 259(3), p 112-117.

    Article  CAS  Google Scholar 

  27. S. Lathabai, M. Ottmüller and I. Fernandez, Solid Particle Erosion Behaviour of Thermal Sprayed Ceramic, Met. Polym. Coat. Wear, 1998, 221(2), p 93-108.

    CAS  Google Scholar 

  28. B. Swain, S. Chatterjee, S.S. Mohapatra, and A. Behera, Mechanical Properties Evaluation and Parametric Optimization of Atmospheric Plasma Spray NiTi Coating, J. Mater. Eng. Perform., 2022, p 1-15 https://doi.org/10.1007/s11665-022-06834-0

  29. B. Swain, S. Kumar Bhuyan, S. Sanjeeb Mohapatra, D. Kumar Rajak, A. Behera and C. Iulian Pruncu, Adhesion Strength Investigation of Plasma Sprayed NiTi Coating, Eng. Fail. Anal., 2022, 140, p 106368. https://doi.org/10.1016/j.engfailanal.2022.106368

    Article  CAS  Google Scholar 

  30. B. Swain, A.R. Pati, S.S. Mohapatra and A. Behera, Interchanging Characteristic of Plasma Spray Coating from Superhydrophobic to Hydrophilic under the Applied Electric Field, Surface Engineering, 2021, 37(10), p 1328-1337. https://doi.org/10.1080/02670844.2021.1959286

    Article  CAS  Google Scholar 

  31. B. Swain, P. Mallick, S.S. Mohapatra, A. Behera, D.K. Rajak and P.L. Menezes, Atmospheric Plasma Spray Coating of NiTi on Mild Steel Substrate: An Microstructural Investigation, J. Bio- Tribo-Corros., 2021, 7(3), p 104. https://doi.org/10.1007/s40735-021-00541-4

    Article  Google Scholar 

  32. B. Swain, A.R. Pati, P. Mallick, S.S. Mohapatra and A. Behera, Development of Highly Durable Superhydrophobic Coatings by One-Step Plasma Spray Methodology, J. Therm. Spray Technol., 2021, 30(1-2), p 405-423. https://doi.org/10.1007/s11666-020-01132-4

    Article  CAS  Google Scholar 

  33. B. Swain, S. Patel, P. Mallick, S.S. Mohapatra, and A. Behera, “Solid Particle Erosion Wear of Plasma Sprayed NiTi Alloy Used for Aerospace Applications,”. in: Proceedings of the International Thermal Spray Conference, 2019, p 346-351

  34. N. Cinca, A. Isalgué, J. Fernández and J.M. Guilemany, Structure Characterization and Wear Performance of NiTi Thermal Sprayed Coatings, Smart Mater. Struct., 2010, 19(8), p 085011. https://doi.org/10.1088/0964-1726/19/8/085011

    Article  CAS  Google Scholar 

  35. H. Hiraga, T. Inoue, H. Shimura and A. Matsunawa, Cavitation Erosion Mechanism of NiTi Coatings Made by Laser Plasma Hybrid Spraying, Wear, 1999, 231(2), p 272-278. https://doi.org/10.1016/S0043-1648(99)00133-7

    Article  CAS  Google Scholar 

  36. J.M. Guilemany, N. Cinca, S. Dosta and A.V. Benedetti, Corrosion Behaviour of Thermal Sprayed Nitinol Coatings, Corros. Sci., 2009, 51(1), p 171-180. https://doi.org/10.1016/j.corsci.2008.10.022

    Article  CAS  Google Scholar 

  37. Z. Shi, J. Wang, Z. Wang, Y. Qiao, T. Xiong and Y. Zheng, Cavitation Erosion and Jet Impingement Erosion Behavior of the NiTi Coating Produced by Air Plasma Spraying, Coatings, 2018, 8(10), p 346. https://doi.org/10.3390/coatings8100346

    Article  CAS  Google Scholar 

  38. B. Swain, P. Mallick, S.K. Bhuyan, S.S. Mohapatra, S.C. Mishra and A. Behera, Mechanical Properties of NiTi Plasma Spray Coating, J. Therm. Spray Technol., 2020, 29(4), p 741-755. https://doi.org/10.1007/s11666-020-01017-6

    Article  CAS  Google Scholar 

  39. B. Swain, S. Bajpai and A. Behera, Microstructural Evolution of NITINOL and Their Species Formed by Atmospheric Plasma Spraying, Surf. Topogr. Metrol. Prop., 2019, 7(1), p 601500. https://doi.org/10.1088/2051-672X/aaf30e

    Article  Google Scholar 

  40. B. Swain, P. Mallick, R.K. Gupta, S.S. Mohapatra, G. Yasin, T.A. Nguyen and A. Behera, Mechanical and Tribological Properties Evaluation of Plasma-Sprayed Shape Memory Alloy Coating, J. Alloys Compd., 2021, 863, p 158599. https://doi.org/10.1016/j.jallcom.2021.158599

    Article  CAS  Google Scholar 

  41. B. Swain, M. Priyadarshini, S.S. Mohapatra, R.K. Gupta and A. Behera, Parametric Optimization of Atmospheric Plasma Spray Coating Using Fuzzy TOPSIS Hybrid Technique, J. Alloys Compd., 2021, 867, p 159074. https://doi.org/10.1016/j.jallcom.2021.159074

    Article  CAS  Google Scholar 

  42. M.M. Verdian, K. Raeissi and M. Salehi, Corrosion Performance of HVOF and APS Thermally Sprayed NiTi Intermetallic Coatings in 3.5% NaCl Solution, Corros. Sci., 2010, 52(3), p 1052-1059. https://doi.org/10.1016/j.corsci.2009.11.034

    Article  CAS  Google Scholar 

  43. S. Sampath and H. Herman, Rapid Solidification and Microstructure Development during Plasma Spray Deposition, J. Therm. Spray Technol., 1996, 5(4), p 445-456.

    Article  CAS  Google Scholar 

  44. M.M. Verdian, K. Raeissi and M. Salehi, Electrochemical Impedance Spectroscopy of HVOF-Sprayed NiTi Intermetallic Coatings Deposited on AISI 1045 Steel, J. Alloys Compd., 2010, 507(1), p 42-46. https://doi.org/10.1016/j.jallcom.2010.07.132

    Article  CAS  Google Scholar 

  45. D.G. Bhosale, T.R. Prabhu, W.S. Rathod, M.A. Patil and S.W. Rukhande, High Temperature Solid Particle Erosion Behaviour of SS 316L and Thermal Sprayed WC-Cr3C2-Ni Coatings, Wear, 2020, 462-463, p 203520. https://doi.org/10.1016/j.wear.2020.203520

    Article  CAS  Google Scholar 

  46. V. Singh, I. Singh, A. Bansal, A. Omer, A.K. Singla and D.K. Goyal, Cavitation Erosion Behavior of High Velocity Oxy Fuel (HVOF) Sprayed (VC+ CuNi-Cr) Based Novel Coatings on SS316 Steel, Surf. Coat. Technol., 2022, 432, p 128052. https://doi.org/10.1016/j.surfcoat.2021.128052

    Article  CAS  Google Scholar 

  47. K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater. Sci., 2005, 50(5), p 511-678.

    Article  CAS  Google Scholar 

  48. “Nickel Titanium-Wikipedia,” n.d., https://en.wikipedia.org/wiki/Nickel_titanium. (Accessed 2 December 2019)

  49. M. Bram, A. Ahmad-Khanlou, H.P. Buchkremer and D. Stöver, Vacuum Plasma Spraying of NiTi Protection Layers, Mater. Lett., 2002, 57(3), p 647-651.

    Article  CAS  Google Scholar 

  50. L. Gao, H. Guo, L. Wei, C. Li, S. Gong and H. Xu, Microstructure and Mechanical Properties of Yttria Stabilized Zirconia Coatings Prepared by Plasma Spray Physical Vapor Deposition, Ceram. Int., 2015, 41(7), p 8305-8311. https://doi.org/10.1016/j.ceramint.2015.02.141

    Article  CAS  Google Scholar 

  51. O. Sarikaya, E. Celik, S.C. Okumus, S. Aslanlar and S. Anik, Effect on Residual Stresses in Plasma Sprayed Al-Si/B4C Composite Coatings Subjected to Thermal Shock, Surf. Coat. Technol., 2005, 200(7), p 2497-2503. https://doi.org/10.1016/j.surfcoat.2004.08.071

    Article  CAS  Google Scholar 

  52. D. Thirumalaikumarasamy, K. Shanmugam and V. Balasubramanian, Establishing Empirical Relationships to Predict Porosity Level and Corrosion Rate of Atmospheric Plasma-Sprayed Alumina Coatings on AZ31B Magnesium Alloy, J. Magnes. Alloy., 2014, 2(2), p 140-153. https://doi.org/10.1016/j.jma.2014.05.002

    Article  CAS  Google Scholar 

  53. P. Ctibor, R. Lechnerová and V. Beneš, Quantitative Analysis of Pores of Two Types in a Plasma-Sprayed Coating, Mater. Charact., 2006, 56(4-5), p 297-304. https://doi.org/10.1016/j.matchar.2005.11.016

    Article  CAS  Google Scholar 

  54. I.Y. Konyashin and T.V. Chukalovskaya, A Technique for Measurement of Porosity in Protective Coatings, Surf. Coat. Technol., 1997, 88(1-3), p 5-11. https://doi.org/10.1016/S0257-8972(95)02758-0

    Article  CAS  Google Scholar 

  55. R. Jůzková, P. Ctibor and V. Beneš, Analysis of Porous Structure in Plasma-Sprayed Coating, Image Anal. Stereol., 2011, 23(1), p 45. https://doi.org/10.5566/ias.v23.p45-52

    Article  Google Scholar 

  56. J. Huang, W. Wang, X. Lu, S. Liu and C. Li, Influence of Lamellar Interface Morphology on Cracking Resistance of Plasma-Sprayed YSZ Coatings, Coatings, 2018, 8(5), p 187. https://doi.org/10.3390/coatings8050187

    Article  CAS  Google Scholar 

  57. E.A. Zverev, V.Y. Skeeba, P.Y. Skeeba and I.V. Khlebova, Defining Efficient Modes Range for Plasma Spraying Coatings, IOP Conf. Ser. Earth Environ. Sci., 2017, 87(8), p 082061. https://doi.org/10.1088/1755-1315/87/8/082061

    Article  Google Scholar 

  58. J.G. Odhiambo, W. Li, Y. Zhao and C. Li, Porosity and Its Significance in Plasma-Sprayed Coatings, Coatings, 2019, 9(7), p 460. https://doi.org/10.3390/coatings9070460

    Article  CAS  Google Scholar 

  59. G. Mauer, Plasma Characteristics and Plasma-Feedstock Interaction under PS-PVD Process Conditions, Plasma Chem. Plasma Process., 2014, 34(5), p 1171-1186. https://doi.org/10.1007/s11090-014-9563-z

    Article  CAS  Google Scholar 

  60. X. Zhang, C. Wang, R. Ye, C. Deng, X. Liang, Z. Deng, S. Niu, J. Song, G. Liu, M. Liu, K. Zhou, J. Lu and J. Feng, Mechanism of Vertical Crack Formation in Yb2SiO5 Coatings Deposited via Plasma Spray-Physical Vapor Deposition, J. Mater., 2020, 6(1), p 102-108. https://doi.org/10.1016/j.jmat.2020.01.002

    Article  Google Scholar 

  61. R. Ghasemi and H. Vakilifard, Plasma-Sprayed Nanostructured YSZ Thermal Barrier Coatings: Thermal Insulation Capability and Adhesion Strength, Ceram. Int., 2017, 43(12), p 8556-8563. https://doi.org/10.1016/j.ceramint.2017.03.074

    Article  CAS  Google Scholar 

  62. M. Hajian Foroushani, M. Shamanian, M. Salehi and F. Davar, Porosity Analysis and Oxidation Behavior of Plasma Sprayed YSZ and YSZ/LaPO4 Abradable Thermal Barrier Coatings, Ceram. Int., 2016, 42(14), p 15868-15875. https://doi.org/10.1016/j.ceramint.2016.07.057

    Article  CAS  Google Scholar 

  63. J.A. Curran and T.W. Clyne, Porosity in Plasma Electrolytic Oxide Coatings, Acta Mater., 2006, 54(7), p 1985-1993. https://doi.org/10.1016/j.actamat.2005.12.029

    Article  CAS  Google Scholar 

  64. A.H. Pakseresht, E. Ghasali, M. Nejati, K. Shirvanimoghaddam, A.H. Javadi and R. Teimouri, Development Empirical-Intelligent Relationship between Plasma Spray Parameters and Coating Performance of Yttria-Stabilized Zirconia, Int. J. Adv. Manuf. Technol., 2014, 76(5-8), p 1031-1045.

    Article  Google Scholar 

  65. R.H. Richman, A.S. Rao and D.E. Hodgson, Cavitation Erosion of Two NiTi Alloys, Wear, 1992, 157(2), p 401-407.

    Article  CAS  Google Scholar 

  66. Y. Maozhong, H. Baiyun and H. Jiawen, Erosion Wear Behaviour and Model of Abradable Seal Coating, Wear, 2002, 252(1-2), p 9-15. https://doi.org/10.1016/S0043-1648(01)00681-0

    Article  Google Scholar 

  67. J. Hearley, J. Little and A. Sturgeon, The Erosion Behaviour of NiAl Intermetallic Coatings Produced by High Velocity Oxy-Fuel Thermal Spraying, Wear, 1999, 233-235, p 328-333. https://doi.org/10.1016/S0043-1648(99)00240-9

    Article  CAS  Google Scholar 

  68. P.K. Singh and S.B. Mishra, Erosion Wear Characteristics of HVOF Sprayed WC-Co-Cr and CoNiCrAlY Coatings on IS-2062 Structural Steel, Mater. Res. Express, 2018, 5(9), p 095508. https://doi.org/10.1088/2053-1591/aad85d

    Article  CAS  Google Scholar 

  69. A. Patnaik, A. Satapathy, N. Chand, N.M. Barkoula and S. Biswas, Solid Particle Erosion Wear Characteristics of Fiber and Particulate Filled Polymer Composites: A Review, Wear, 2010, 268(1-2), p 249-263. https://doi.org/10.1016/j.wear.2009.07.021

    Article  CAS  Google Scholar 

  70. N. Krishnamurthy, M.S. Murali, B. Venkataraman and P.G. Mukunda, Characterization and Solid Particle Erosion Behavior of Plasma Sprayed Alumina and Calcia-Stabilized Zirconia Coatings on Al-6061 Substrate, Wear, 2012, 274-275, p 15-27.

    Article  CAS  Google Scholar 

  71. P. Kulu, I. Hussainova and R. Veinthal, Solid Particle Erosion of Thermal Sprayed Coatings, Wear, 2005, 258(1-4), p 488-496.

    Article  CAS  Google Scholar 

  72. Y. Maozhong, H. Baiyun and H. Jiawen, Erosion Wear Behaviour and Model for Abradable Seal Coating, Wear, 2002, 252(1-2), p 9-15.

    Article  Google Scholar 

  73. B. Wang, Erosion-Corrosion of Thermal Sprayed Coatings in FBC Boilers, Wear, 1996, 199(1), p 24-32. https://doi.org/10.1016/0043-1648(96)06972-4

    Article  CAS  Google Scholar 

  74. B. Wang and S.W. Lee, Erosion-Corrosion Behaviour of HVOF NiAl-Al2O3 Intermetallic-Ceramic Coating, Wear, 2000, 239(1), p 83-90. https://doi.org/10.1016/S0043-1648(00)00309-4

    Article  CAS  Google Scholar 

  75. B.Q. Wang and Z.R. Shui, The Hot Erosion Behavior of HVOF Chromium Carbide-Metal Cermet Coatings Sprayed with Different Powders, Wear, 2002, 253(5-6), p 550-557. https://doi.org/10.1016/S0043-1648(02)00049-2

    Article  CAS  Google Scholar 

  76. H. Singh and B.S. Sidhu, Erosion Characteristics of HVOF Developed Cr3C2-NiCr and WC-Co Coatings, Mater. Sci. Forum, 2013, 751, p 71-79. https://doi.org/10.4028/www.scientific.net/MSF.751.71

    Article  CAS  Google Scholar 

  77. H.S. Sidhu, B.S. Sidhu and S. Prakash, Solid Particle Erosion of HVOF Sprayed NiCr and Stellite-6 Coatings, Surf. Coat. Technol., 2007, 202(2), p 232-238. https://doi.org/10.1016/j.surfcoat.2007.05.035

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Swain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, B., Mantry, S., Mohapatra, S.S. et al. Investigation of Tribological Behavior of Plasma Sprayed NiTi Coating for Aerospace Application. J Therm Spray Tech 31, 2342–2369 (2022). https://doi.org/10.1007/s11666-022-01452-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01452-7

Keywords

Navigation