Skip to main content

Advertisement

Log in

Circ_0004712 Silencing Suppresses the Aggressive Changes of Rheumatoid Arthritis Fibroblast-Like Synoviocytes by Targeting miR-633/TRAF6 Axis

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Circular RNA_0004712 (circ_0004712) is reported to be up-regulated in rheumatoid arthritis (RA) patients. Nevertheless, its role and mechanism in RA pathology remain to be clarified. RNA and protein expression was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot assay. Cell viability, proliferation, apoptosis, migration, and inflammation were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, 5-ethynyl-20-deoxyuridine assay, flow cytometry, scratch test, and enzyme-linked immunosorbent assay. The target correlation between microRNA-633 (miR-633) and circ_0004712 or TNF receptor associated factor 6 (TRAF6) was verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. Circ_0004712 was up-regulated in RA synovial tissues and RA fibroblast-like synoviocytes (RA-FLSs). Circ_0004712 silencing suppressed the viability, proliferation, migration and inflammatory response and facilitated the apoptosis of RA-FLSs. miR-633 was confirmed to be a direct target of circ_0004712, and miR-633 knockdown reversed circ_0004712 silencing-mediated protective effects on the dysfunction and inflammation of RA-FLSs. TRAF6 was a direct target of miR-633, and miR-633 overexpression suppressed the aggressive changes of RA-FLSs by down-regulating TRAF6. Circ_0004712 could up-regulate TRAF6 expression by sponging miR-633 in RA-FLSs. Circ_0004712 interference inactivated nuclear factor (NF)-κB signaling by targeting miR-633/TRAF6 axis. Circ_0004712 silencing inhibited the aggressive changes of RA-FLSs by targeting miR-633/TRAF6 axis and NF-κB signaling, which provided new targets for RA therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

RA:

Rheumatoid arthritis

ELISA:

Enzyme-linked immunosorbent assay

RA-FLSs:

RA fibroblast-like synoviocytes

PDE7B:

Phosphodiesterase 7B

References

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SZ: conceived and designed the study, and drafted the first draft of the manuscript. All experiments were completed by all authors. ZS, GC, XD, WZ, DJ, YL: analyzed and collated the results. All authors reviewed and critiqued the manuscript, and agreed to the final submission of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yafei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

The protocol was authorized by the Ethical Committee of Honghui Hospital, Xi’an Jiaotong University. All the participants had signed the written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Shen, Z., Chao, G. et al. Circ_0004712 Silencing Suppresses the Aggressive Changes of Rheumatoid Arthritis Fibroblast-Like Synoviocytes by Targeting miR-633/TRAF6 Axis. Biochem Genet 61, 521–537 (2023). https://doi.org/10.1007/s10528-022-10265-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-022-10265-w

Keywords

Navigation