Skip to main content
Log in

Associations between cardiometabolic phenotypes and levels of TNF-α, CRP, and interleukins in obstructive sleep apnea

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Obstructive sleep apnea (OSA) shows a chronic inflammatory state which is often accompanied by cardiometabolic phenotypes. The aim of this study was to investigate whether or not there were differences of inflammatory proteins levels in patients with OSA with and without a certain phenotype so as to explore the associations between inflammation and additional OSA phenotypes.

Methods

The literature was systematically screened and available data were collected on levels of tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), and several interleukins (ILs) in patients with OSA with and without a certain phenotype. Overall effect size of standard mean difference (SMD) was used to compare the expression of differences between the two groups. Data analysis was conducted by Review Manager 5.3, and the threshold of p value was set as < 0.05.

Results

A total of 31 articles were included, covering five traits of obesity, hypertension (HBP), metabolic syndrome (MS), heart disease, and sex. There were elevated levels of TNF-α (SMD = 0.63, p = 0.03), CRP (SMD = 0.64, p = 0.0001), and IL-6 (SMD = 0.83, p = 0.008) levels in OSA with obesity. Also, OSA with HBP showed significant increases of TNF-α (SMD = 0.36, p = 0.02), CRP (SMD = 0.98, p = 0.01), and IL-6 (SMD = 0.76, p < 0.0001) levels. A higher CRP level was also observed in OSA with MS (SMD = 0.31, p = 0.004) and female sex (SMD = 0.21, p = 0.002). There were no statistical differences for IL-1β (p = 0.22) and CRP (p = 0.14) levels of OSA with obesity and heart disease respectively compared with OSA without corresponding phenotype. TNF-α (p = 0.66) and IL-6 (p = 0.49) levels also lacked statistically significant differences between female and male patients with OSA.

Conclusions

Our results revealed that inflammatory proteins TNF-α, CRP, and IL-6 levels were higher in obese and hypertensive patients with OSA and CRP levels were higher in OSA with metabolic syndrome, highlighting a link between inflammation and cardiometabolic complications in patients with OSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Senaratna CV, Perret JL, Lodge CJ et al (2017) Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev 34:70–81. https://doi.org/10.1016/j.smrv.2016.07.002

    Article  PubMed  Google Scholar 

  2. Silverberg DS, Oksenberg A (2001) Are sleep-related breathing disorders important contributing factors to the production of essential hypertension? Curr Hypertens Rep 3(3):209–215. https://doi.org/10.1007/s11906-001-0040-8

    Article  CAS  PubMed  Google Scholar 

  3. Coughlin SR, Mawdsley L, Mugarza JA, Calverley PM, Wilding JP (2004) Obstructive sleep apnoea is independently associated with an increased prevalence of metabolic syndrome. Eur Heart J 25(9):735–741. https://doi.org/10.1016/j.ehj.2004.02.021

    Article  PubMed  Google Scholar 

  4. Sánchez-de-la-Torre M, Campos-Rodriguez F, Barbé F (2013) Obstructive sleep apnoea and cardiovascular disease. Lancet Respir Med 1(1):61–72. https://doi.org/10.1016/s2213-2600(12)70051-6

    Article  PubMed  Google Scholar 

  5. Goldbart AD, Gannot M, Haddad H, Gopas J (2020) Nuclear factor kappa B activation in cardiomyocytes by serum of children with obstructive sleep apnea syndrome. Sci Rep 10(1):22115. https://doi.org/10.1038/s41598-020-79187-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther. 2:17023. https://doi.org/10.1038/sigtrans.2017.23

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shamsuzzaman AS, Winnicki M, Lanfranchi P et al (2022) Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation 105(21):2462–2464. https://doi.org/10.1161/01.cir.0000018948.95175.03

    Article  Google Scholar 

  8. Yi M, Tan Y, Pi Y et al (2022) Variants of candidate genes associated with the risk of obstructive sleep apnea. Eur J Clin Invest 52(1):e13673. https://doi.org/10.1111/eci.13673

    Article  CAS  PubMed  Google Scholar 

  9. Yi M, Zhao W, Tan Y et al (2022) The causal relationships between obstructive sleep apnea and elevated CRP and TNF-α protein levels. Ann Med 54(1):1578–1589. https://doi.org/10.1080/07853890.2022.2081873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nadeem R, Molnar J, Madbouly EM et al (2013) Serum inflammatory markers in obstructive sleep apnea: a meta-analysis. J Clin Sleep Med 9(10):1003–1012. https://doi.org/10.5664/jcsm.3070

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ramseyer VD, Garvin JL (2013) Tumor necrosis factor-α: regulation of renal function and blood pressure. Am J Physiol Renal Physiol 304(10):F1231-1242. https://doi.org/10.1152/ajprenal.00557.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mohammadi M, Gozashti MH, Aghadavood M, Mehdizadeh MR, Hayatbakhsh MM (2017) Clinical significance of serum IL-6 and TNF-α levels in patients with metabolic syndrome. Rep Biochem Mol Biol 6(1):74–79

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Choi KM, Lee J, Lee KW et al (2004) Comparison of serum concentrations of C-reactive protein, TNF-alpha, and interleukin 6 between elderly Korean women with normal and impaired glucose tolerance. Diabetes Res Clin Pract 64(2):99–106. https://doi.org/10.1016/j.diabres.2003.10.007

    Article  CAS  PubMed  Google Scholar 

  14. Davey Smith G, Lawlor DA, Harbord R et al (2005) Association of C-reactive protein with blood pressure and hypertension: life course confounding and mendelian randomization tests of causality. Arterioscler Thromb Vasc Biol 25(5):1051–1056. https://doi.org/10.1161/01.ATV.0000160351.95181.d0

    Article  CAS  PubMed  Google Scholar 

  15. Fu Y, Wu Y, Liu E (2020) C-reactive protein and cardiovascular disease: from animal studies to the clinic (Review). Exp Ther Med 20(2):1211–1219. https://doi.org/10.3892/etm.2020.8840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Komurcu-Bayrak E, Erginel-Unaltuna N, Onat A et al (2009) Association of C-reactive protein (CRP) gene allelic variants with serum CRP levels and hypertension in Turkish adults. Atherosclerosis 206(2):474–479. https://doi.org/10.1016/j.atherosclerosis.2009.03.030

    Article  CAS  PubMed  Google Scholar 

  17. Manica-Cattani MF, Bittencourt L, Rocha MI et al (2010) Association between interleukin-1 beta polymorphism (+3953) and obesity. Mol Cell Endocrinol 314(1):84–89. https://doi.org/10.1016/j.mce.2009.07.029

    Article  CAS  PubMed  Google Scholar 

  18. Mărginean CO, Meliţ LE, Huțanu A, Ghiga DV, Săsăran MO (2020) The adipokines and inflammatory status in the era of pediatric obesity. Cytokine 126:154925. https://doi.org/10.1016/j.cyto.2019.154925

    Article  CAS  PubMed  Google Scholar 

  19. Krishnan SM, Sobey CG, Latz E, Mansell A (2014) Drummond GR IL-1β and IL-18 inflammatory markers or mediators of hypertension? Br J Pharmacol. 171(24):5589–5602. https://doi.org/10.1111/bph.12876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Newcastle Ottawa Scale (NOS). http://www.ohrica/programs/clinical_epidemiology/oxford.asp (accessed 31 May 2020).

  21. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135. https://doi.org/10.1186/1471-2288-14-135

    Article  PubMed  PubMed Central  Google Scholar 

  22. Luo D, Wan X, Liu J, Tong T (2018) Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res 27(6):1785–1805. https://doi.org/10.1177/0962280216669183

    Article  PubMed  Google Scholar 

  23. Kanbay A, Kokturk O, Ciftci TU, Tavil Y, Bukan N (2008) Comparison of serum adiponectin and tumor necrosis factor-alpha levels between patients with and without obstructive sleep apnea syndrome. Respiration 76(3):324–330. https://doi.org/10.1159/000134010

    Article  CAS  PubMed  Google Scholar 

  24. Gozal D, Capdevila OS, Kheirandish-Gozal L (2008) Metabolic alterations and systemic inflammation in obstructive sleep apnea among nonobese and obese prepubertal children. Am J Respir Crit Care Med 177(10):1142–1149. https://doi.org/10.1164/rccm.200711-1670OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lavie L, Vishnevsky A, Lavie P (2007) Oxidative stress and systemic inflammation in patients with sleep apnea: role of obesity. Sleep Biol Rhythms 5(2):100–110. https://doi.org/10.1111/j.1479-8425.2007.00259.x

    Article  Google Scholar 

  26. Barceló A, Barbé F, Llompart E et al (2004) Effects of obesity on C-reactive protein level and metabolic disturbances in male patients with obstructive sleep apnea. Am J Med 117(2):118–121. https://doi.org/10.1016/j.amjmed.2004.01.025

    Article  CAS  PubMed  Google Scholar 

  27. Dogan D, Ocal N, Aydogan M et al (2016) Assessment of the role of serum ischemia-modified albumin in obstructive sleep apnea in comparison with interleukin-6. Postgrad Med 128(6):603–608. https://doi.org/10.1080/00325481.2016.1203237

    Article  PubMed  Google Scholar 

  28. De Santis S, Cambi J, Tatti P, Bellussi L, Passali D (2015) Changes in ghrelin, leptin and pro-inflammatory cytokines after therapy in obstructive sleep apnea syndrome (OSAS) patients. Otolaryngol Pol 69(2):1–8. https://doi.org/10.5604/00306657.1147029

    Article  PubMed  Google Scholar 

  29. Chuang HH, Huang CG, Chuang LP et al (2020) Relationships among and predictive values of obesity, inflammation markers, and disease severity in pediatric patients with obstructive sleep apnea before and after adenotonsillectomy. J Clin Med 9(2). https://doi.org/10.3390/jcm9020579

  30. Tang T, Huang Q, Liu J et al (2019) Oxidative stress does not contribute to the release of proinflammatory cytokines through activating the Nod-like receptor protein 3 inflammasome in patients with obstructive sleep apnoea. Sleep Breath 23(2):535–542. https://doi.org/10.1007/s11325-018-1726-3

    Article  PubMed  Google Scholar 

  31. Kong Y, Li Z, Tang T et al (2018) The level of lipopolysaccharide-binding protein is elevated in adult patients with obstructive sleep apnea. BMC Pulm Med 18(1):90. https://doi.org/10.1186/s12890-018-0647-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heizati M, Li N, Shao L et al (2017) Does increased serum d-lactate mean subclinical hyperpermeability of intestinal barrier in middle-aged nonobese males with OSA? Medicine (Baltimore) 96(49):e9144. https://doi.org/10.1097/md.0000000000009144

    Article  CAS  PubMed  Google Scholar 

  33. Dalesio NM, Lee CKK, Hendrix CW et al (2020) Effects of obstructive sleep apnea and obesity on morphine pharmacokinetics in children. Anesth Analg 131(3):876–884. https://doi.org/10.1213/ane.0000000000004509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li NF, Yao XG, Zhu J et al (2010) Higher levels of plasma TNF-alpha and neuropeptide Y in hypertensive patients with obstructive sleep apnea syndrome. Clin Exp Hypertens 32(1):54–60. https://doi.org/10.3109/10641960902993087

    Article  CAS  PubMed  Google Scholar 

  35. Msaad S, Chaabouni A, Marrakchi R et al (2020) Nocturnal continuous positive airway pressure (nCPAP) decreases high-sensitivity C-reactive protein (hs-CRP) in obstructive sleep apnea-hypopnea syndrome. Sleep Disord 2020:8913247. https://doi.org/10.1155/2020/8913247

    Article  PubMed  PubMed Central  Google Scholar 

  36. K Li Z Chen Y Qin YX Wei 2019 Plasm YKL-40 levels are associated with hypertension in patients with obstructive sleep apnea Biomed Res Int 2019https://doi.org/10.1155/2019/5193597

  37. Bozkus F, Dikmen N, Demir LS (2018) Gamma-glutamyl transferase activity as a predictive marker for severity of obstructive sleep apnea syndrome and concomitant hypertension. Clinical Respiratory Journal 12(5):1964–1973. https://doi.org/10.1111/crj.12765

    Article  CAS  PubMed  Google Scholar 

  38. Zhang H, Feng L, Wu X, Niu Y, Du H (2016) Prognostic role of advanced glycation end products in male patients with obstructive sleep apnoea syndrome and hypertension. Int J Clin Exp Med 9(7):13135–13141

    CAS  Google Scholar 

  39. Damiani MF, Zito A, Carratù P et al (2015) Obstructive sleep apnea, hypertension, and their additive effects on atherosclerosis. Biochem Res Int 2015:984193. https://doi.org/10.1155/2015/984193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abdel-Fadeil MR, Abedelhaffez AS, Makhlouf HA, Al Qirshi GA (2017) Obstructive sleep apnea: Influence of hypertension on adiponectin, inflammatory markers and dyslipidemia. Pathophysiology 24(4):305–315. https://doi.org/10.1016/j.pathophys.2017.08.003

    Article  CAS  PubMed  Google Scholar 

  41. Liu Z, Xu Y, Hua Q, Wang Y, Liu R, Yang Z (2011) Additive effects of obstructive sleep apnea syndrome and hypertension on inflammatory reaction. Afr J Biotech 10(55):11738–11744

    CAS  Google Scholar 

  42. Qian X, Yin T, Li T et al (2012) High levels of inflammation and insulin resistance in obstructive sleep apnea patients with hypertension. Inflammation 35(4):1507–1511. https://doi.org/10.1007/s10753-012-9464-3

    Article  CAS  PubMed  Google Scholar 

  43. Moise LG, Marta DS, Raşcu A (2018) Moldoveanu E Serum lipoprotein-associated phospholipase a2 in males with metabolic syndrome and obstructive sleep apnea. Acta Endocrinol (Buchar). 14(1):36–42. https://doi.org/10.4183/aeb.2018.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yardim-Akaydin S, Caliskan-Can E, Firat H, Ardic S, Simsek B (2014) Influence of gender on C-reactive protein, fibrinogen, and erythrocyte sedimentation rate in obstructive sleep apnea. Antiinflamm Antiallergy Agents Med Chem 13(1):56–63. https://doi.org/10.2174/18715230113129990015

    Article  CAS  PubMed  Google Scholar 

  45. Ahbab S, Ataoǧlu HE, Tuna M et al (2012) Neck circumference metabolic syndrome and obstructive sleep apnea syndrome Evaluation of possible linkage. Medical Science Monitor. 19(1):111–117. https://doi.org/10.12659/MSM.883776

    Article  CAS  Google Scholar 

  46. Shiina K, Tomiyama H, Takata Y et al (2006) Concurrent presence of metabolic syndrome in obstructive sleep apnea syndrome exacerbates the cardiovascular risk: a sleep clinic cohort study. Hypertens Res 29(6):433–441. https://doi.org/10.1291/hypres.29.433

    Article  PubMed  Google Scholar 

  47. Wan Y, Yang N, Xu M, Shen W, Huai D, Zheng Y (2019) Risk factors of coronary artery stenosis in patients with obstructive sleep apnoea: a prospective study. J Pak Med Assoc 69(11):1610–1616. https://doi.org/10.5455/jpma.286541

    Article  PubMed  Google Scholar 

  48. Asano K, Takata Y, Usui Y et al (2009) New index for analysis of polysomnography, “integrated area of desaturation”, is associated with high cardiovascular risk in patients with mild to moderate obstructive sleep apnea. Respiration 78(3):278–284. https://doi.org/10.1159/000202980

    Article  PubMed  Google Scholar 

  49. Kokturk O, Ciftci TU, Mollarecep E, Ciftci B (2005) Elevated C-reactive protein levels and increased cardiovascular risk in patients with obstructive sleep apnea syndrome. Int Heart J 46(5):801–809. https://doi.org/10.1536/ihj.46.801

    Article  CAS  PubMed  Google Scholar 

  50. Karadeniz Y, Onat A, Akbaş T, Şimşek B, Yüksel H, Can G (2017) Determinants of obstructive sleep apnea syndrome: pro-inflammatory state and dysfunction of high-density lipoprotein. Nutrition 43–44:54–60. https://doi.org/10.1016/j.nut.2017.06.021

    Article  CAS  PubMed  Google Scholar 

  51. Mermigkis C, Bouloukaki I, Mermigkis D et al (2012) CRP evolution pattern in CPAP-treated obstructive sleep apnea patients Does gender play a role? Sleep Breath. 16(3):813–819. https://doi.org/10.1007/s11325-011-0580-3

    Article  PubMed  Google Scholar 

  52. Gaines J, Vgontzas AN, Fernandez-Mendoza J, Kritikou I, Basta M, Bixler EO (2015) Gender differences in the association of sleep apnea and inflammation. Brain Behav Immun 47:211–217. https://doi.org/10.1016/j.bbi.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  53. Hirotsu C, Albuquerque RG, Nogueira H et al (2017) The relationship between sleep apnea, metabolic dysfunction and inflammation: the gender influence. Brain Behav Immun 59:211–218. https://doi.org/10.1016/j.bbi.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  54. Arnardottir ES, Maislin G, Schwab RJ et al (2012) The interaction of obstructive sleep apnea and obesity on the inflammatory markers C-reactive protein and interleukin-6: the Icelandic Sleep Apnea Cohort. Sleep 35(7):921–932. https://doi.org/10.5665/sleep.1952

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chae CU, Lee RT, Rifai N, Ridker PM (2001) Blood pressure and inflammation in apparently healthy men. Hypertension 38(3):399–403. https://doi.org/10.1161/01.hyp.38.3.399

    Article  CAS  PubMed  Google Scholar 

  56. Brasier AR, Li J, Wimbish KA (1996) Tumor necrosis factor activates angiotensinogen gene expression by the Rel A transactivator. Hypertension 27(4):1009–1017. https://doi.org/10.1161/01.hyp.27.4.1009

    Article  CAS  PubMed  Google Scholar 

  57. Drager LF, Bortolotto LA, Figueiredo AC, Silva BC, Krieger EM, Lorenzi-Filho G (2007) Obstructive sleep apnea, hypertension, and their interaction on arterial stiffness and heart remodeling. Chest 131(5):1379–1386. https://doi.org/10.1378/chest.06-2703

    Article  PubMed  Google Scholar 

  58. Arnardottir ES, Mackiewicz M, Gislason T, Teff KL, Pack AI (2009) Molecular signatures of obstructive sleep apnea in adults: a review and perspective. Sleep 32(4):447–470. https://doi.org/10.1093/sleep/32.4.447

    Article  PubMed  PubMed Central  Google Scholar 

  59. Del Giudice M, Gangestad SW (2018) Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav Immun 70:61–75. https://doi.org/10.1016/j.bbi.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  60. Dohi Y, Takase H, Sato K, Ueda R (2007) Association among C-reactive protein, oxidative stress, and traditional risk factors in healthy Japanese subjects. Int J Cardiol 115(1):63–66. https://doi.org/10.1016/j.ijcard.2006.04.006

    Article  PubMed  Google Scholar 

  61. Singh P, Hawkley LC, McDade TW, Cacioppo JT, Masi CM (2009) Autonomic tone and C-reactive protein: a prospective population-based study. Clin Auton Res 19(6):367–374. https://doi.org/10.1007/s10286-009-0019-0

    Article  PubMed  PubMed Central  Google Scholar 

  62. Vgontzas AN, Bixler EO, Chrousos GP (2005) Sleep apnea is a manifestation of the metabolic syndrome. Sleep Med Rev 9(3):211–224. https://doi.org/10.1016/j.smrv.2005.01.006

    Article  PubMed  Google Scholar 

  63. Lin R, Yi M, Yan W, Zhang Y. 2022 Positive airway pressure therapy in heart failure patients comorbid with obstructive sleep apnea: cardiovascular outcomes and nighttime-duration effect. Eur J Clin Invest. e13821. https://doi.org/10.1111/eci.13821

  64. Labarca G, Schmidt A, Dreyse J et al (2021) Efficacy of continuous positive airway pressure (CPAP) in patients with obstructive sleep apnea (OSA) and resistant hypertension (RH): Systematic review and meta-analysis. Sleep Med Rev 58:101446. https://doi.org/10.1016/j.smrv.2021.101446

    Article  CAS  PubMed  Google Scholar 

  65. Marin JM, Carrizo SJ, Vicente E, Agusti AG (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365(9464):1046–1053. https://doi.org/10.1016/s0140-6736(05)71141-7

    Article  PubMed  Google Scholar 

  66. Teramoto S, Yamaguchi Y, Yamamoto H et al (2008) Cardiovascular and metabolic effects of CPAP in obese obstructive sleep apnoea patients. Eur Respir J 31(1):223–225. https://doi.org/10.1183/09031936.00105707

    Article  CAS  PubMed  Google Scholar 

  67. Gaines J, Vgontzas AN, Fernandez-Mendoza J, Bixler EO (2018) Obstructive sleep apnea and the metabolic syndrome: the road to clinically-meaningful phenotyping, improved prognosis, and personalized treatment. Sleep Med Rev 42:211–219. https://doi.org/10.1016/j.smrv.2018.08.009

    Article  PubMed  PubMed Central  Google Scholar 

  68. Drager LF, Brunoni AR, Jenner R, Lorenzi-Filho G, Benseñor IM, Lotufo PA (2015) Effects of CPAP on body weight in patients with obstructive sleep apnoea: a meta-analysis of randomised trials. Thorax 70(3):258–264. https://doi.org/10.1136/thoraxjnl-2014-205361

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 82001357), the Hunan Provincial Natural Science Foundation of China (No. 2021JJ80079), the Youth Science Foundation of Xiangya Hospital (No. 2019Q17), the Degree & Postgraduate Education Reform Project of Central South University (No. 2021YJSKSA10), the Undergraduate Education Reform Project of Central South University (No. 2021CG065, No. 2021CG068), and the Research Project of Laboratory Construction and Management of Central South University (No. 202120).

Author information

Authors and Affiliations

Authors

Contributions

Study design: MH.Y. and Y.Z.; data collection: QM.F., Y.T., WC.Z., MH.Y., and Y.Z.; data analysis: QM.F., Y.T., WC.Z., MH.Y., and Y.Z.; writing: QM.F., Y.T., WC.Z., MH.Y., and Y.Z.; funding: MH.Y., and Y.Z.; administration: MH.Y., and Y.Z.

Corresponding author

Correspondence to Yuan Zhang.

Ethics declarations

Ethical approval

Not applicable. No human participants included. For this type of study, formal consent is not required

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Disclaimer

The sponsor had no role in the design or conduct of this research.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Quanming Fei, Yun Tan and Minhan Yi contributed equally to this work and are co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 99 KB)

Supplementary file2 (DOCX 105 49 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, Q., Tan, Y., Yi, M. et al. Associations between cardiometabolic phenotypes and levels of TNF-α, CRP, and interleukins in obstructive sleep apnea. Sleep Breath 27, 1033–1042 (2023). https://doi.org/10.1007/s11325-022-02697-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-022-02697-w

Keywords

Navigation