Skip to main content

Advertisement

Log in

Flow blockage disrupts cilia-driven fluid transport in the epileptic brain

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

A Correction to this article was published on 29 September 2022

This article has been updated

Abstract

A carpet of ependymal motile cilia lines the brain ventricular system, forming a network of flow channels and barriers that pattern cerebrospinal fluid (CSF) flow at the surface. This CSF transport system is evolutionary conserved, but its physiological function remains unknown. Here we investigated its potential role in epilepsy with studies focused on CDKL5 deficiency disorder (CDD), a neurodevelopmental disorder with early-onset epilepsy refractory to seizure medications and the most common cause of infant epilepsy. CDKL5 is a highly conserved X-linked gene suggesting its function in regulating cilia length and motion in the green alga Chlamydomonas might have implication in the etiology of CDD. Examination of the structure and function of airway motile cilia revealed both the CDD patients and the Cdkl5 knockout mice exhibit cilia lengthening and abnormal cilia motion. Similar defects were observed for brain ventricular cilia in the Cdkl5 knockout mice. Mapping ependymal cilia generated flow in the ventral third ventricle (v3V), a brain region with important physiological functions showed altered patterning of flow. Tracing of cilia-mediated inflow into v3V with fluorescent dye revealed the appearance of a flow barrier at the inlet of v3V in Cdkl5 knockout mice. Analysis of mice with a mutation in another epilepsy-associated kinase, Yes1, showed the same disturbance of cilia motion and flow patterning. The flow barrier was also observed in the Foxj1± and FOXJ1CreERT:Cdkl5y/fl mice, confirming the contribution of ventricular cilia to the flow disturbances. Importantly, mice exhibiting altered cilia-driven flow also showed increased susceptibility to anesthesia-induced seizure-like activity. The cilia-driven flow disturbance arises from altered cilia beating orientation with the disrupted polarity of the cilia anchoring rootlet meshwork. Together these findings indicate motile cilia disturbances have an essential role in CDD-associated seizures and beyond, suggesting cilia regulating kinases may be a therapeutic target for medication-resistant epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Raw data will be made accessible upon request.

Change history

References

  1. Amendola E, Zhan Y, Mattucci C et al (2014) Mapping pathological phenotypes in a mouse model of CDKL5 disorder. PLoS ONE. https://doi.org/10.1371/journal.pone.0091613

    Article  PubMed  PubMed Central  Google Scholar 

  2. Antoniades I, Stylianou P, Skourides PA (2014) Making the connection: ciliary adhesion complexes anchor basal bodies to the actin cytoskeleton. Dev Cell. https://doi.org/10.1016/j.devcel.2013.12.003

    Article  PubMed  Google Scholar 

  3. Barbiero I, de Rosa R, Kilstrup-Nielsen C (2019) Microtubules: a key to understand and correct neuronal defects in CDKL5 deficiency disorder? Int J Mol Sci. https://doi.org/10.3390/ijms20174075

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boscher C, Gaonaćh-Lovejoy V, Delisle C, Gratton JP (2019) Polarization and sprouting of endothelial cells by angiopoietin-1 require PAK2 and paxillin-dependent Cdc42 activation. Mol Biol Cell. https://doi.org/10.1091/mbc.E18-08-0486

    Article  PubMed  PubMed Central  Google Scholar 

  5. Buniello A, Macarthur JAL, Cerezo M et al (2019) The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. https://doi.org/10.1093/nar/gky1120

    Article  PubMed  Google Scholar 

  6. Canning P, Park K, Gonçalves J et al (2018) CDKL family kinases have evolved distinct structural features and ciliary function. Cell Rep. https://doi.org/10.1016/j.celrep.2017.12.083

    Article  PubMed  PubMed Central  Google Scholar 

  7. Canning P, Park K, Gonçalves J et al (2018) CDKL family kinases have evolved distinct structural features and ciliary function. Cell Rep 22:885–894. https://doi.org/10.1016/j.celrep.2017.12.083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen Q, Zhu YC, Yu J et al (2010) CDKL5, a protein associated with Rett syndrome, regulates neuronal morphogenesis via Rac1 signaling. J Neurosci. https://doi.org/10.1523/JNEUROSCI.1102-10.2010

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dentler WL, Adams C (1992) Flagellar microtubule dynamics in Chlamydomonas: cytochalasin D induces periods of microtubule shortening and elongation; and colchicine induces disassembly of the distal, but not proximal, half of the flagellum. J Cell Biol 117:1289–1298

    Article  CAS  Google Scholar 

  10. Faubel R, Westendorf C, Bodenschatz E, Eichele G (1979) Cilia-based flow network in the brain ventricles. Science 353:176–178. https://doi.org/10.1126/science.aae0450

    Article  CAS  Google Scholar 

  11. Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. https://doi.org/10.1016/j.mri.2012.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fehr S, Wong K, Chin R et al (2016) Seizure variables and their relationship to genotype and functional abilities in the CDKL5 disorder. Neurology. https://doi.org/10.1212/WNL.0000000000003352

    Article  PubMed  Google Scholar 

  13. Finn RD, Attwood TK, Babbitt PC et al (2017) InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw1107

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fuchs C, Trazzi S, Torricella R et al (2014) Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3β signaling. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2014.06.006

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ganapathiraju M, Chaparala S (2016) Schizophrenia interactome: fully-labeled interactome network. npj Schizophr. https://doi.org/10.1038/npjschz.2016.25

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guo W, Shang DM, Cao JH et al (2017) Identifying and analyzing novel epilepsy-related genes using random walk with restart algorithm. Biomed Res Int. https://doi.org/10.1155/2017/6132436

    Article  PubMed  PubMed Central  Google Scholar 

  17. Handen A, Ganapathiraju MK (2015) LENS: Web-based lens for enrichment and network studies of human proteins. BMC Med Genomics. https://doi.org/10.1186/1755-8794-8-S4-S2

    Article  PubMed  PubMed Central  Google Scholar 

  18. Horn T, Klein J (2010) Lactate levels in the brain are elevated upon exposure to volatile anesthetics: a microdialysis study. Neurochem Int. https://doi.org/10.1016/j.neuint.2010.09.014

    Article  PubMed  Google Scholar 

  19. Jupp B, Williams J, Binns D et al (2013) Metabolic causes of epileptic encephalopathy. Epilepsy Res Treat. https://doi.org/10.1155/2013/124934

    Article  Google Scholar 

  20. Karunakaran K, Ganapathiraju M (2020) Interactome of SARS-CoV-2/nCoV19 modulated host proteins with computationally predicted PPIs. Res Sq. https://doi.org/10.21203/rs.3.rs-28592/v1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Karunakaran KB, Chaparala S, Lo CW, Ganapathiraju MK (2020) Cilia interactome with predicted protein–protein interactions reveals connections to Alzheimer’s disease, aging and other neuropsychiatric processes. Sci Rep. https://doi.org/10.1038/s41598-020-72024-4

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim J, Lee JE, Heynen-Genel S et al (2010) Functional genomic screen for modulators of ciliogenesis and cilium length. Nature. https://doi.org/10.1038/nature08895

    Article  PubMed  PubMed Central  Google Scholar 

  23. Leonard H, Junaid M, Wong K et al (2021) Exploring quality of life in individuals with a severe developmental and epileptic encephalopathy, CDKL5 deficiency disorder. Epilepsy Res. https://doi.org/10.1016/j.eplepsyres.2020.106521

    Article  PubMed  Google Scholar 

  24. Li Y, Klena NT, Gabriel GC et al (2015) Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature. https://doi.org/10.1038/nature14269

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liao Y, Wang J, Jaehnig EJ et al (2019) WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz401

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liao W, Lee K-Z, Chen J-C et al (2020) Deficiency of cyclin-dependent kinase-like 5 causes spontaneous seizures in neonatal mice. bioRxiv. https://doi.org/10.1101/2020.03.09.983981

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mirra V, Werner C, Santamaria F (2017) Primary ciliary dyskinesia: an update on clinical aspects, genetics, diagnosis, and future treatment strategies. Front Pediatr. https://doi.org/10.3389/fped.2017.00135

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mukherjee I, Roy S, Chakrabarti S (2019) Identification of important effector proteins in the FOXJ1 transcriptional network associated with ciliogenesis and ciliary function. Front Genet. https://doi.org/10.3389/fgene.2019.00023

    Article  PubMed  PubMed Central  Google Scholar 

  29. Muthusamy N, Vijayakumar A, Cheng G, Ghashghaei HT (2014) A Knock-in Foxj1CreERT2: GFP mouse for recombination in epithelial cells with motile cilia. Genesis. https://doi.org/10.1002/dvg.22753

    Article  PubMed  PubMed Central  Google Scholar 

  30. Negraes PD, Trujillo CA, Yu NK et al (2021) Altered network and rescue of human neurons derived from individuals with early-onset genetic epilepsy. Mol Psychiatry. https://doi.org/10.1038/s41380-021-01104-2

    Article  PubMed  PubMed Central  Google Scholar 

  31. Noebels J (2015) Pathway-driven discovery of epilepsy genes. Nat Neurosci. https://doi.org/10.1038/nn.3933

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nuche-Berenguer B, Ramos-Álvarez I, Jensen RT (2016) The p21-activated kinase, PAK2, is important in the activation of numerous pancreatic acinar cell signaling cascades and in the onset of early pancreatitis events. Biochim Biophys Acta. https://doi.org/10.1016/j.bbadis.2016.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  33. Olson HE, Demarest ST, Pestana-Knight EM et al (2019) Cyclin-dependent kinase-like 5 deficiency disorder: clinical review. Pediatr Neurol. https://doi.org/10.1016/j.pediatrneurol.2019.02.015

    Article  PubMed  PubMed Central  Google Scholar 

  34. Paz JT, Huguenard JR (2015) Microcircuits and their interactions in epilepsy: is the focus out of focus? Nat Neurosci. https://doi.org/10.1038/nn.3950

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol. https://doi.org/10.1083/jcb.200504008

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rawlins EL, Ostrowski LE, Randell SH, Hogan BLM (2007) Lung development and repair: contribution of the ciliated lineage. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0610770104

    Article  PubMed  Google Scholar 

  37. Sattar S, Gleeson JG (2011) The ciliopathies in neuronal development: a clinical approach to investigation of Joubert syndrome and Joubert syndrome-related disorders. Dev Med Child Neurol. https://doi.org/10.1111/j.1469-8749.2011.04021.x

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imageJ: 25 years of image analysis HHS public access. Nat Methods. https://doi.org/10.1038/nmeth.2089

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shapiro AJ, Zariwala MA, Ferkol T et al (2016) Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr Pulmonol. https://doi.org/10.1002/ppul.23304

    Article  PubMed  Google Scholar 

  40. Smith CL, Eppig JT (2012) The mammalian phenotype ontology as a unifying standard for experimental and high-throughput phenotyping data. Mamm Genome. https://doi.org/10.1007/s00335-012-9421-3

    Article  PubMed  PubMed Central  Google Scholar 

  41. Smith CEL, Lake AVR, Johnson CA (2020) Primary cilia, ciliogenesis and the actin cytoskeleton: a little less resorption, a little more actin please. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2020.622822

    Article  PubMed  PubMed Central  Google Scholar 

  42. Staley K (2015) Molecular mechanisms of epilepsy. Nat Neurosci. https://doi.org/10.1038/nn.3947

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tam L-W, Ranum PT, Lefebvre PA (2013) CDKL5 regulates flagellar length and localizes to the base of the flagella in Chlamydomonas. Mol Biol Cell. https://doi.org/10.1091/mbc.e12-10-0718

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tang S, Wang I-TJ, Yue C et al (2017) Loss of CDKL5 in glutamatergic neurons disrupts hippocampal microcircuitry and leads to memory impairment in mice. J Neurosci. https://doi.org/10.1523/JNEUROSCI.0539-17.2017

    Article  PubMed  PubMed Central  Google Scholar 

  45. Terzic B, Cui Y, Edmondson AC et al (2021) X-linked cellular mosaicism underlies age-dependent occurrence of seizure-like events in mouse models of CDKL5 deficiency disorder. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2020.105176

    Article  PubMed  Google Scholar 

  46. Terzic B, Felicia Davatolhagh M, Ho Y et al (2021) Temporal manipulation of Cdkl5 reveals essential postdevelopmental functions and reversible CDKL5 deficiency disorder-related deficits. J Clin Investig. https://doi.org/10.1172/JCI143655

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tsukita S, Kunimoto K, Yamazaki Y et al (2012) Coordinated ciliary beating requires Odf2-mediated polarization of basal bodies via basal feet. Cell. https://doi.org/10.1016/j.cell.2011.10.052

    Article  PubMed  Google Scholar 

  48. Voss LJ, Sleigh JW, Barnard JPM, Kirsch HE (2008) The howling cortex: seizures and general anesthetic drugs. Anesth Analg. https://doi.org/10.1213/ane.0b013e3181852595

    Article  PubMed  Google Scholar 

  49. Wang ITJ, Allen M, Goffin D et al (2012) Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1216988110

    Article  PubMed  PubMed Central  Google Scholar 

  50. Werner ME, Hwang P, Huisman F et al (2011) Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells. J Cell Biol. https://doi.org/10.1083/jcb.201106110

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yang J, Gao J, Adamian M et al (2005) The ciliary rootlet maintains long-term stability of sensory cilia. Mol Cell Biol. https://doi.org/10.1128/mcb.25.10.4129-4137.2005

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yoder SM, Dineen SL, Wang Z, Thurmond DC (2014) YES, a src family kinase, is a proximal glucose-specific activator of cell division cycle control protein 42 (Cdc42) in pancreatic islet β cells. J Biol Chem. https://doi.org/10.1074/jbc.M114.559328

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zuleta-Alarcon A, Castellon-Larios K, Moran K et al (2014) Anesthesia-related perioperative seizures: pathophysiology, predisposing factors and practical recommendations. Austin J Anesth Analg 2:1026

    Google Scholar 

Download references

Acknowledgements

We thank Dr Pete Lefebvre for advising about the initial idea that CDD might be a motile ciliopathy. We thank Dr Joe Zhou and Dr Chay Kuo for generously providing Cdkl5fl/fl, Cdkl5y/fl and FOXJ1CreERT mice, and supporting with advice.

Funding

German Research Foundation grant FA 1457/1-1 (RJF); National Institutes of Health grant NIH HL142788 (CWL); National Institutes of Health grant NIH HL132024-01 (CWL); National Institutes of Health grant NIH GM051293 (SMK); MKG’s effort is supported by Department of Biomedical Informatics of University of Pittsburgh School of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CWL, RJF; Methodology: CWL, RJF, SMK, YW, MKG; Data collection: RJF, MY; Recruitment of CDD patients: JG, NHB; Data analysis: RJF, VSC, MY; Computational Data analysis: RJF, YW, KBK; Visualization: RJF, TNF, YW, MKG, CWL; Funding acquisition: CWL, SMK, RJF; Project administration: CWL; Supervision: CWL, RJF; Writing—original draft: CWL, RJF; Writing—review and editing: CWL, RJF, SMK, YW, KBK, MKG.

Corresponding author

Correspondence to Cecilia W. Lo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 28 KB)

Supplementary file2 (AVI 1914 KB)

Supplementary file3 (AVI 7974 KB)

Supplementary file4 (MOV 5459 KB)

Supplementary file5 (AVI 1701 KB)

Supplementary file6 (MP4 61788 KB)

Supplementary file7 (AVI 446 KB)

Supplementary file8 (MP4 76331 KB)

Supplementary file9 (XLSX 331 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faubel, R.J., Santos Canellas, V.S., Gaesser, J. et al. Flow blockage disrupts cilia-driven fluid transport in the epileptic brain. Acta Neuropathol 144, 691–706 (2022). https://doi.org/10.1007/s00401-022-02463-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-022-02463-y

Keywords

Navigation