Skip to main content

Advertisement

Log in

Increased pulse wave velocity is related to impaired working memory and executive function in older adults with metabolic syndrome

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Age-related vascular alterations promote the pathogenesis of vascular cognitive impairment (VCI). Cardiovascular risk factors that accelerate vascular aging exacerbate VCI. Metabolic syndrome (MetS) constitutes a cluster of critical cardiovascular risk factors (abdominal obesity, hypertension, elevated triglycerides, elevated fasting glucose, reduced HDL cholesterol), which affects nearly 37% of the adult US population. The present study was designed to test the hypotheses that MetS exacerbates cognitive impairment and that arterial stiffening moderates the association between cognitive dysfunction and MetS in older adults. MetS was defined by the NCEP ATP III guidelines. Cognitive function (digit span and trail-making tests) and brachial-ankle pulse wave velocity (baPWV; a non-invasive clinical measurement of arterial stiffness) were assessed in older adults with MetS and age- and sex-matched controls. Multiple linear regression models were applied to test for the main effects of MetS, baPWV, and their interaction on cognitive performance. Fifty-three participants with MetS (age: 68 ± 8 years) and 39 age-matched individuals without MetS (age: 66 ± 9 years) were enrolled into the study. In adjusted multivariable regression analyses of the digit span backward length score, both MetS (ß = 1.97, p = 0.048) and MetS by baPWV interaction (ß =  − 0.001, p = 0.026) were significant predictors. In participants with MetS, higher baPWV was associated with poorer performance on digit span backward length score, a test of working memory (R =  − 0.44, p = 0.0012), but there was no association in those without MetS (R = 0.035, p = 0.83). MetS was negatively associated with performance on the digit span backward length score, baPWV was negatively associated with multiple neuropsychological outcomes, and baPWV moderated the association between digit span backward length score and MetS, as individuals with both MetS and higher baPWV had the most impaired cognitive function. Our findings add to the growing body of evidence that individuals with MetS and higher baPWV may be prone to VCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Elias MF, Robbins MA, Budge MM, Abhayaratna WP, Dore GA, Elias PK. Arterial pulse wave velocity and cognition with advancing age. Hypertension. 2009;53:668–73. https://doi.org/10.1161/HYPERTENSIONAHA.108.126342.

    Article  CAS  Google Scholar 

  2. Dichgans M, Leys D. Vascular Cognitive Impairment. Circ Res. 2017;120:573–91. https://doi.org/10.1161/CIRCRESAHA.116.308426.

    Article  CAS  Google Scholar 

  3. Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Circ Physiol. 2017;312:H1-20. https://doi.org/10.1152/ajpheart.00581.2016.

    Article  Google Scholar 

  4. O’Brien JT, Erkinjuntti T, Reisberg B, Roman G, Sawada T, Pantoni L, et al. Vascular cognitive impairment. Lancet Neurol. 2003;2:89–98. https://doi.org/10.1016/S1474-4422(03)00305-3.

    Article  Google Scholar 

  5. Boyle PA, Wilson RS, Aggarwal NT, Tang Y, Bennett DA. Mild cognitive impairment: Risk of Alzheimer disease and rate of cognitive decline. Neurology. 2006;67:441–5. https://doi.org/10.1212/01.wnl.0000228244.10416.20.

    Article  CAS  Google Scholar 

  6. Pal K, Mukadam N, Petersen I, Cooper C. Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: a systematic review and meta-analysis. Soc Psychiatry Psychiatr Epidemiol. 2018;53:1149–60. https://doi.org/10.1007/s00127-018-1581-3.

    Article  Google Scholar 

  7. Liu-Ambrose TY, Ashe MC, Graf P, Beattie BL, Khan KM. Increased risk of falling in older community-dwelling women with mild cognitive impairment. Phys Ther. 2008;88:1482–91. https://doi.org/10.2522/ptj.20080117.

    Article  Google Scholar 

  8. Wilson RS, Segawa E, Boyle PA, Anagnos SE, Hizel LP, Bennett DA. The natural history of cognitive decline in Alzheimer’s disease. Psychol Aging. 2012;27:1008–17. https://doi.org/10.1037/a0029857.

    Article  Google Scholar 

  9. Hussenoeder FS, Conrad I, Roehr S, Fuchs A, Pentzek M, Bickel H, et al. Mild cognitive impairment and quality of life in the oldest old: a closer look. Qual Life Res. 2020;29:1675–83. https://doi.org/10.1007/s11136-020-02425-5.

    Article  Google Scholar 

  10. Guehne U, Luck T, Busse A, Angermeyer MC, Riedel-Heller SG. Mortality in individuals with mild cognitive impairment. Neuroepidemiol. 2007;29:226–34. https://doi.org/10.1159/000112479.

    Article  Google Scholar 

  11. Expert Panel on Detection, Evaluation and T of HBC in A. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA J Am Med Assoc 2001;285:2486–97. https://doi.org/10.1001/jama.285.19.2486.

  12. Hirode G, Wong RJ. Trends in the prevalence of metabolic syndrome in the United States, 2011–2016. JAMA. 2020;323:2526. https://doi.org/10.1001/jama.2020.4501.

    Article  Google Scholar 

  13. Moore JX, Chaudhary N, Akinyemiju T. Metabolic syndrome prevalence by race/ethnicity and sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev Chronic Dis. 2017;14:160287. https://doi.org/10.5888/pcd14.160287.

    Article  Google Scholar 

  14. Alexander CM, Landsman PB, Teutsch SM, Haffner SM. NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older. Diabetes. 2003;52:1210–4. https://doi.org/10.2337/diabetes.52.5.1210.

    Article  CAS  Google Scholar 

  15. Wilson PWF, D’Agostino RB, Parise H, Sullivan L, Meigs JB. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation. 2005;112:3066–72. https://doi.org/10.1161/CIRCULATIONAHA.105.539528.

    Article  CAS  Google Scholar 

  16. Isomaa B, Almgren P, Tuomi T, Forsén B, Lahti K, Nissén M, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24:683–9. https://doi.org/10.2337/diacare.24.4.683.

    Article  CAS  Google Scholar 

  17. Lakka H-M. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288:2709. https://doi.org/10.1001/jama.288.21.2709.

    Article  Google Scholar 

  18. Guembe MJ, Fernandez-Lazaro CI, Sayon-Orea C, Toledo E, Moreno-Iribas C. Risk for cardiovascular disease associated with metabolic syndrome and its components: a 13-year prospective study in the RIVANA cohort. Cardiovasc Diabetol. 2020;19:195. https://doi.org/10.1186/s12933-020-01166-6.

    Article  CAS  Google Scholar 

  19. Segura B, Jurado MÁ, Freixenet N, Albuin C, Muniesa J, Junqué C. Mental slowness and executive dysfunctions in patients with metabolic syndrome. Neurosci Lett. 2009;462:49–53. https://doi.org/10.1016/j.neulet.2009.06.071.

    Article  CAS  Google Scholar 

  20. Marseglia A, Darin-Mattsson A, Skoog J, Rydén L, Hadarsson-Bodin T, Kern S, et al. Metabolic syndrome is associated with poor cognition: a population-based study of 70-year-old adults without dementia. Journals Gerontol Ser A. 2021;76:2275–83. https://doi.org/10.1093/gerona/glab195.

    Article  CAS  Google Scholar 

  21. Dearborn JL, Knopman D, Sharrett AR, Schneider ALC, Jack CR Jr, Coker LH, et al. The metabolic syndrome and cognitive decline in the Atherosclerosis Risk in Communities Study (ARIC). Dement Geriatr Cogn Disord. 2014;38:337–46. https://doi.org/10.1159/000362265.

    Article  CAS  Google Scholar 

  22. Wang X, Ji L, Tang Z, Ding G, Chen X, Lv J, et al. The association of metabolic syndrome and cognitive impairment in Jidong of China: a cross-sectional study. BMC Endocr Disord. 2021;21:40. https://doi.org/10.1186/s12902-021-00705-w.

    Article  CAS  Google Scholar 

  23. Liu Z, Lippa CF. Association of metabolic syndrome and inflammation with cognitive decline in adults aged 60 years and older: findings from a national health survey in the United States. Neurosci J. 2013;2013:1–7. https://doi.org/10.1155/2013/846027.

    Article  Google Scholar 

  24. Lai MMY, Ames DJ, Cox KL, Ellis KA, Sharman MJ, Hepworth G, et al. Association between cognitive function and clustered cardiovascular risk of metabolic syndrome in older adults at risk of cognitive decline. J Nutr Health Aging. 2020;24:300–4. https://doi.org/10.1007/s12603-020-1333-4.

    Article  CAS  Google Scholar 

  25. Raffaitin C, Feart C, Le Goff M, Amieva H, Helmer C, Akbaraly TN, et al. Metabolic syndrome and cognitive decline in French elders: the Three-City Study. Neurology. 2011;76:518–25. https://doi.org/10.1212/WNL.0b013e31820b7656.

    Article  CAS  Google Scholar 

  26. Foret JT, Oleson S, Hickson B, Valek S, Tanaka H, Haley AP. Metabolic syndrome and cognitive function in midlife. Arch Clin Neuropsychol. 2021;36:897–907. https://doi.org/10.1093/arclin/acaa112.

    Article  Google Scholar 

  27. Rouch I, Trombert B, Kossowsky MP, Laurent B, Celle S, Ntougou Assoumou G, et al. Metabolic Syndrome is associated with poor memory and executive performance in elderly community residents: the PROOF study. Am J Geriatr Psychiatry. 2014;22:1096–104. https://doi.org/10.1016/j.jagp.2014.01.005.

    Article  Google Scholar 

  28. Falkowski J, Atchison T, DeButte-Smith M, Weiner MF, O’Bryant S. Executive functioning and the metabolic syndrome: a project FRONTIER study. Arch Clin Neuropsychol. 2014;29:47–53. https://doi.org/10.1093/arclin/act078.

    Article  Google Scholar 

  29. Diamond A. Executive Functions. Annu Rev Psychol. 2013;64:135–68. https://doi.org/10.1146/annurev-psych-113011-143750.

    Article  Google Scholar 

  30. Moreira HS, Costa AS, Castro SL, Lima CF, Vicente SG. Assessing executive dysfunction in neurodegenerative disorders: a critical review of brief neuropsychological tools. Front Aging Neurosci. 2017;9:1780–2. https://doi.org/10.3389/fnagi.2017.00369.

    Article  Google Scholar 

  31. Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol. 2000;41:49–100. https://doi.org/10.1006/cogp.1999.0734.

    Article  CAS  Google Scholar 

  32. Feinkohl I, Janke J, Hadzidiakos D, Slooter A, Winterer G, Spies C, et al. Associations of the metabolic syndrome and its components with cognitive impairment in older adults. BMC Geriatr. 2019;19:77. https://doi.org/10.1186/s12877-019-1073-7.

    Article  Google Scholar 

  33. Dik MG, Jonker C, Comijs HC, Deeg DJH, Kok A, Yaffe K, et al. Contribution of metabolic syndrome components to cognition in older individuals. Diabetes Care. 2007;30:2655–60. https://doi.org/10.2337/dc06-1190.

    Article  Google Scholar 

  34. Overman MJ, Pendleton N, O’Neill TW, Bartfai G, Casanueva FF, Forti G, et al. Glycemia but not the metabolic syndrome is associated with cognitive decline: findings from the European male ageing study. Am J Geriatr Psychiatry. 2017;25:662–71. https://doi.org/10.1016/j.jagp.2017.02.004.

    Article  Google Scholar 

  35. Assuncao N, Sudo FK, Drummond C, de Felice FG, Mattos P. Metabolic syndrome and cognitive decline in the elderly: a systematic review. PLoS One. 2018;13:e0194990. https://doi.org/10.1371/journal.pone.0194990.

    Article  CAS  Google Scholar 

  36. Tomiyama H, Hirayama Y, Hashimoto H, Yambe M, Yamada J, Koji Y, et al. The effects of changes in the metabolic syndrome detection status on arterial stiffening: a prospective study. Hypertens Res. 2006;29:673–8. https://doi.org/10.1291/hypres.29.673.

    Article  Google Scholar 

  37. Gardner AW, Parker DE, Montgomery PS, Blevins SM. Step-monitored home exercise improves ambulation, vascular function, and inflammation in symptomatic patients with peripheral artery disease: a randomized controlled trial. J Am Heart Assoc. 2014;3:2233–45. https://doi.org/10.1161/JAHA.114.001107.

    Article  Google Scholar 

  38. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39:S1-266.

    Google Scholar 

  39. Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, Diehm C, et al. Measurement and interpretation of the ankle-brachial index. Circulation. 2012;126:2890–909. https://doi.org/10.1161/CIR.0b013e318276fbcb.

    Article  Google Scholar 

  40. Gardner AW, Montgomery PS, Casanegra AI, Silva-Palacios F, Ungvari Z, Csiszar A. Association between gait characteristics and endothelial oxidative stress and inflammation in patients with symptomatic peripheral artery disease. Age (Omaha). 2016;38:64. https://doi.org/10.1007/s11357-016-9925-y.

    Article  CAS  Google Scholar 

  41. Zhang Q, Yi N, Liu S, Zheng H, Qiao X, Xiong Q, et al. Easier operation and similar power of 10 g monofilament test for screening diabetic peripheral neuropathy. J Int Med Res. 2018;46:3278–84. https://doi.org/10.1177/0300060518775244.

    Article  Google Scholar 

  42. Armstrong DG, Lavery LA, Vela SA, Quebedeaux TL, Fleischli JG. Choosing a practical screening instrument to identify patients at risk for diabetic foot ulceration. Arch Intern Med. 1998;158:289. https://doi.org/10.1001/archinte.158.3.289.

    Article  CAS  Google Scholar 

  43. Oyer DS, Saxon D, Shah A. Quantitative assessment of diabetic peripheral neuropathy with use of the clanging tuning fork test. Endocr Pract. 2007;13:5–10. https://doi.org/10.4158/EP.13.1.5.

    Article  Google Scholar 

  44. Pietrobelli A, Rubiano F, St-Onge M-P, Heymsfield SB. New bioimpedance analysis system: improved phenotyping with whole-body analysis. Eur J Clin Nutr. 2004;58:1479–84. https://doi.org/10.1038/sj.ejcn.1601993.

    Article  CAS  Google Scholar 

  45. Sluyter JD, Schaaf D, Scragg RKR, Plank LD. Prediction of fatness by standing 8-electrode bioimpedance: a multiethnic adolescent population. Obesity. 2010;18:183–9. https://doi.org/10.1038/oby.2009.166.

    Article  Google Scholar 

  46. Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech. 2009;2:231–7. https://doi.org/10.1242/dmm.001180.

    Article  CAS  Google Scholar 

  47. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome. Circulation. 2005;112:2735–52. https://doi.org/10.1161/CIRCULATIONAHA.105.169404.

    Article  Google Scholar 

  48. Zimmet P, Magliano D, Matsuzawa Y, Alberti G, Shaw J. The metabolic syndrome: a global public health problem and a new definition. J Atheroscler Thromb. 2005;12:295–300. https://doi.org/10.5551/jat.12.295.

    Article  CAS  Google Scholar 

  49. Waldstein SR, Tankard CF, Maier KJ, Pelletier JR, Snow J, Gardner AW, et al. Peripheral arterial disease and cognitive function. Psychosom Med. 2003;65:757–63. https://doi.org/10.1097/01.PSY.0000088581.09495.5E.

    Article  Google Scholar 

  50. Goetz CG. Textbook of clinical neurology. 3rd ed. Philadelphia: WB Saunders; 2007.

  51. Shirk SD, Mitchell MB, Shaughnessy LW, Sherman JC, Locascio JJ, Weintraub S, et al. A web-based normative calculator for the uniform data set (UDS) neuropsychological test battery. Alzheimers Res Ther. 2011;3:32. https://doi.org/10.1186/alzrt94.

    Article  Google Scholar 

  52. Cortez-Cooper MY, Supak JA, Tanaka H. A new device for automatic measurements of arterial stiffness and ankle-brachial index. Am J Cardiol. 2003;91:1519–22. https://doi.org/10.1016/S0002-9149(03)00416-8.

    Article  Google Scholar 

  53. Hung C-S, Lin J-W, Hsu C-N, Chen H-M, Tsai R-Y, Chien Y-F, et al. Using brachial-ankle pulse wave velocity to associate arterial stiffness with cardiovascular risks. Nutr Metab Cardiovasc Dis. 2009;19:241–6. https://doi.org/10.1016/j.numecd.2008.07.006.

    Article  Google Scholar 

  54. Ridout SJ, Parker BA, Proctor DN. Age and regional specificity of peak limb vascular conductance in women. J Appl Physiol. 2005;99:2067–74. https://doi.org/10.1152/japplphysiol.00825.2005.

    Article  Google Scholar 

  55. Torres-Sánchez I, Rodríguez-Alzueta E, Cabrera-Martos I, López-Torres I, Moreno-Ramírez MP, Valenza MC. Cognitive impairment in COPD: a systematic review. J Bras Pneumol. 2015;41:182–90. https://doi.org/10.1590/s1806-37132015000004424.

    Article  Google Scholar 

  56. Dodd JW, Chung AW, Van Den Broek MD, Barrick TR, Charlton RA, Jones PW. Brain structure and function in chronic obstructive pulmonary disease: a multimodal cranial magnetic resonance imaging study. Am J Respir Crit Care Med. 2012;186:240–5. https://doi.org/10.1164/rccm.201202-0355OC.

    Article  Google Scholar 

  57. Gignac GE, Weiss LG. Digit Span is (mostly) related linearly to general intelligence: every extra bit of span counts. Psychol Assess. 2015;27:1312–23. https://doi.org/10.1037/pas0000105.

    Article  Google Scholar 

  58. Groth-Marnat G. Handbook of psychological assessment. 5th ed. Hoboken: John Wiley & Sons Inc.; 2009.

  59. D’Esposito M, Postle BR. The cognitive neuroscience of working memory. Annu Rev Psychol. 2015;66:115–42. https://doi.org/10.1146/annurev-psych-010814-015031.THE.

    Article  Google Scholar 

  60. Lara AH, Wallis JD. The role of prefrontal cortex in working memory: a mini review. Front Syst Neurosci. 2015;9:1–7. https://doi.org/10.3389/fnsys.2015.00173.

    Article  Google Scholar 

  61. Chai WJ, Abd Hamid AI, Abdullah JM. Working memory from the psychological and neurosciences perspectives: a review. Front Psychol. 2018;9:196–8. https://doi.org/10.3389/fpsyg.2018.00401.

    Article  Google Scholar 

  62. Sakatani K, Lichty W, Xie Y, Li S, Zuo H. Effects of aging on language-activated cerebral blood oxygenation changes of the left prefrontal cortex: near infrared spectroscopy study. J Stroke Cerebrovasc Dis. 1999;8:398–403. https://doi.org/10.1016/S1052-3057(99)80047-0.

    Article  CAS  Google Scholar 

  63. Murayama Y, Sato Y, Hu L, Brugnera A, Compare A, Sakatani K. Relation between cognitive function and baseline concentrations of hemoglobin in prefrontal cortex of elderly people measured by time-resolved near-infrared spectroscopy. Adv Exp Med Biol. 2017;977:269–76. https://doi.org/10.1007/978-3-319-55231-6_37.

    Article  CAS  Google Scholar 

  64. Vaidya JG, Paradiso S, Boles Ponto LL, McCormick LM, Robinson RG. Aging, grey matter, and blood flow in the anterior cingulate cortex. Neuroimage. 2007;37:1346–53. https://doi.org/10.1016/j.neuroimage.2007.06.015.

    Article  Google Scholar 

  65. Pardo JV, Nyabwari SM, Lee JT. Aging-related hypometabolism in the anterior cingulate cortex of cognitively intact, amyloid-negative seniors at rest mediates the relationship between age and executive function but not memory. Cereb Cortex Commun. 2020;1:1–9. https://doi.org/10.1093/texcom/tgaa020.

    Article  Google Scholar 

  66. Toth P, Tucsek Z, Sosnowska D, Gautam T, Mitschelen M, Tarantini S, et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J Cereb Blood Flow Metab. 2013;33:1732–42. https://doi.org/10.1038/jcbfm.2013.143.

    Article  CAS  Google Scholar 

  67. Scuteri A, Cunha PG, Cucca F, Cockcroft J, Raso FUM, Muiesan ML, et al. Syndrome: a cross-countries study. Atherosclerosis. 2015;233:654–60. https://doi.org/10.1016/j.atherosclerosis.2014.01.041.ARTERIAL.

    Article  Google Scholar 

  68. Tucsek Z, Toth P, Sosnowska D, Gautam T, Mitschelen M, Koller A, et al. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. J Gerontol - Ser A Biol Sci Med Sci. 2014;69:1212–26. https://doi.org/10.1093/gerona/glt177.

    Article  CAS  Google Scholar 

  69. Tucsek Z, Toth P, Tarantini S, Sosnowska D, Gautam T, Warrington JP, et al. Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. J Gerontol - Ser A Biol Sci Med Sci. 2014;69:1339–52. https://doi.org/10.1093/gerona/glu080.

    Article  CAS  Google Scholar 

  70. Toth P, Tarantini S, Springo Z, Tucsek Z, Gautam T, Giles CB, et al. Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection. Aging Cell. 2015;14:400–8. https://doi.org/10.1111/acel.12315.

    Article  CAS  Google Scholar 

  71. Ungvari Z, Toth P, Tarantini S, Prodan CI, Sorond F, Merkely B, et al. Hypertension-induced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol. 2021;17:639–54. https://doi.org/10.1038/s41581-021-00430-6.

    Article  Google Scholar 

  72. Gkousioudi A, Yu X, Ferruzzi J, Qian J, Wainford RD, Seta F, et al. Biomechanical properties of mouse carotid arteries with diet-induced metabolic syndrome and aging. Front Bioeng Biotechnol. 2022;10:1–10. https://doi.org/10.3389/fbioe.2022.862996.

    Article  Google Scholar 

  73. Waldstein SR, Rice SC, Thayer JF, Najjar SS, Scuteri A, Zonderman AB. Pulse pressure and pulse wave velocity are related to cognitive decline in the Baltimore Longitudinal Study of Aging. Hypertension. 2008;51:99–104. https://doi.org/10.1161/HYPERTENSIONAHA.107.093674.

    Article  CAS  Google Scholar 

  74. Zlokovic BV, Gottesman RF, Bernstein KE, Seshadri S, McKee A, Snyder H, et al. Vascular contributions to cognitive impairment and dementia (VCID): a report from the 2018 National Heart, Lung, and Blood Institute and National Institute of Neurological Disorders and Stroke Workshop. Alzheimer’s Dement. 2020;16:1714–33. https://doi.org/10.1002/alz.12157.

    Article  Google Scholar 

  75. Coutinho T, Turner ST, Kullo IJ. Aortic pulse wave velocity is associated with measures of subclinical target organ damage. JACC Cardiovasc Imaging. 2011;4:754–61. https://doi.org/10.1016/j.jcmg.2011.04.011.

    Article  Google Scholar 

  76. Ungvari Z, Tarantini S, Kirkpatrick AC, Csiszar A, Prodan CI. Cerebral microhemorrhages: mechanisms, consequences, and prevention. Am J Physiol - Hear Circ Physiol. 2017;312:H1128–43. https://doi.org/10.1152/ajpheart.00780.2016.

    Article  Google Scholar 

  77. Cipolla MJ. The cerebral circulation. 2nd ed. San Rafael: Morgan & Claypool Life Sciences; 2009.

  78. Toth P, Tucsek Z, Tarantini S, Sosnowska D, Gautam T, Mitschelen M, et al. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab. 2014;34:1887–97. https://doi.org/10.1038/jcbfm.2014.156.

    Article  CAS  Google Scholar 

  79. Springo Z, Toth P, Tarantini S, Ashpole NM, Tucsek Z, Sonntag WE, et al. Aging impairs myogenic adaptation to pulsatile pressure in mouse cerebral arteries. J Cereb Blood Flow Metab. 2015;35:527–30. https://doi.org/10.1038/jcbfm.2014.256.

    Article  Google Scholar 

  80. Sequí-Domínguez I, Cavero-Redondo I, Álvarez-Bueno C, Pozuelo-Carrascosa DP, de Arenas-Arroyo SN, Martínez-Vizcaíno V. Accuracy of pulse wave velocity predicting cardiovascular and all-cause mortality A systematic review and meta-analysis. J Clin Med. 2020;9:1–13. https://doi.org/10.3390/jcm9072080.

    Article  Google Scholar 

  81. Vlachopoulos C, Aznaouridis K, Terentes-Printzios D, Ioakeimidis N, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with brachial-ankle elasticity index: A systematic review and meta-Analysis. Hypertension. 2012;60:556–62. https://doi.org/10.1161/HYPERTENSIONAHA.112.194779.

    Article  CAS  Google Scholar 

  82. Tanaka H, Munakata M, Kawano Y, Ohishi M, Shoji T, Sugawara J, et al. Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness. J Hypertens. 2009;27:2022–7. https://doi.org/10.1097/HJH.0b013e32832e94e7.

    Article  CAS  Google Scholar 

  83. Sugawara J, Tanaka H. Brachial-ankle pulse wave velocity: myths, misconceptions, and realities. Pulse. 2015;3:106–13. https://doi.org/10.1159/000430771.

    Article  Google Scholar 

  84. Atti AR, Valente S, Iodice A, Caramella I, Ferrari B, Albert U, et al. Metabolic syndrome, mild cognitive impairment, and dementia: a meta-analysis of longitudinal studies. Am J Geriatr Psychiatry. 2019;27:625–37. https://doi.org/10.1016/j.jagp.2019.01.214.

    Article  Google Scholar 

  85. Bangen KJ, Armstrong NM, Au R, Gross AL. Metabolic syndrome and cognitive trajectories in the Framingham Offspring Study. J Alzheimer’s Dis. 2019;71:931–43. https://doi.org/10.3233/JAD-190261.

    Article  Google Scholar 

  86. Livingston JM, McDonald MW, Gagnon T, Jeffers MS, Gomez-Smith M, Antonescu S, et al. Influence of metabolic syndrome on cerebral perfusion and cognition. Neurobiol Dis. 2020;137:104756. https://doi.org/10.1016/j.nbd.2020.104756.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant UL1 TR002014, the American Heart Association, the National Institute on Aging (RF1AG072295, R01AG055395, R01AG068295; R01AG070915, K01AG073614), the National Institute of Neurological Disorders and Stroke (R01NS100782), the National Cancer Institute (R01CA255840), and the Cellular and Molecular GeroScience CoBRE (P20GM125528). The funding sources had no role in the study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, the American Heart Association, or the Presbyterian Health Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and approved the manuscript.

Corresponding author

Correspondence to Andrew W. Gardner.

Ethics declarations

Conflict of interest

Dr. Anna Csiszar and Dr. Andriy Yabluchanskiy serve as Associate Editors for GeroScience. Dr. Zoltan Ungvari serves as Editor-in-Chief for GeroScience and as Consulting Editor for The American Journal of Physiology-Heart and Circulatory Physiology.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gosalia, J., Montgomery, P.S., Zhang, S. et al. Increased pulse wave velocity is related to impaired working memory and executive function in older adults with metabolic syndrome. GeroScience 44, 2831–2844 (2022). https://doi.org/10.1007/s11357-022-00640-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00640-1

Keywords

Navigation