• Featured in Physics
  • Open Access

Enhancing Spin Coherence in Optically Addressable Molecular Qubits through Host-Matrix Control

S. L. Bayliss, P. Deb, D. W. Laorenza, M. Onizhuk, G. Galli, D. E. Freedman, and D. D. Awschalom
Phys. Rev. X 12, 031028 – Published 18 August 2022
Physics logo See synopsis: Shielding Qubits with Chemistry
PDFHTMLExport Citation

Abstract

Optically addressable spins are a promising platform for quantum information science due to their combination of a long-lived qubit with a spin-optical interface for external qubit control and readout. The ability to chemically synthesize such systems—to generate optically addressable molecular spins—offers a modular qubit architecture which can be transported across different environments and atomistically tailored for targeted applications through bottom-up design and synthesis. Here, we demonstrate how the spin coherence in such optically addressable molecular qubits can be controlled through engineering their host environment. By inserting chromium (IV)-based molecular qubits into a nonisostructural host matrix, we generate noise-insensitive clock transitions, through a transverse zero-field splitting, that are not present when using an isostructural host. This host-matrix engineering leads to spin-coherence times of more than 10μs for optically addressable molecular spin qubits in a nuclear and electron-spin-rich environment. We model the dependence of spin coherence on transverse zero-field splitting from first principles and experimentally verify the theoretical predictions with four distinct molecular systems. Finally, we explore how to further enhance optical-spin interfaces in molecular qubits by investigating the key parameters of optical linewidth and spin-lattice relaxation time. Our results demonstrate the ability to test qubit structure-function relationships through a tunable molecular platform and highlight opportunities for using molecular qubits for nanoscale quantum sensing in noisy environments.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 18 March 2022
  • Revised 16 June 2022
  • Accepted 1 July 2022

DOI:https://doi.org/10.1103/PhysRevX.12.031028

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & TechnologyCondensed Matter, Materials & Applied Physics

synopsis

Key Image

Shielding Qubits with Chemistry

Published 18 August 2022

The spin state of molecular qubits can be made more stable by changing the chemical environment in which the qubits sit.

See more in Physics

Authors & Affiliations

S. L. Bayliss1,2,*, P. Deb1,3,*, D. W. Laorenza4,5,*, M. Onizhuk1,6, G. Galli1,6,7, D. E. Freedman4,†, and D. D. Awschalom1,3,7,‡

  • 1Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
  • 2James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
  • 3Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
  • 4Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • 5Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
  • 6Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
  • 7Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA

  • *These authors contributed equally to this work.
  • danna@mit.edu
  • awsch@uchicago.edu

Popular Summary

Quantum bits (qubits) are the building blocks for quantum information science, an emerging field that seeks to use quantum-mechanical properties to advance areas from secure communication to biological sensing. The spins of electrons are attractive qubits, as they can preserve quantum states over long timescales and be controlled with light. Housing such optically active spins in molecules offers opportunities to chemically design qubits for bespoke applications. The key to unlocking this potential is to draw on the versatility of molecular systems to enhance qubit properties. Here, we enhance the timescale over which optically active molecular qubits can preserve quantum superpositions (the coherence time) by engineering the molecular packing around the qubit.

The environment around a qubit creates noise—from the fluctuating magnetic fields of atomic nuclei, for example—which limits the qubit’s coherence. One approach to mitigate this decoherence is to reduce the noise sources. However, this strategy is not always possible or convenient. We use an alternative approach: We create optically addressable molecular qubits that are intrinsically less sensitive to noise by chemically controlling their molecular packing. Using host-matrix control, we alter the qubit’s symmetry, resulting in a qubit that is intrinsically protected from magnetic-field noise. This effect significantly enhances coherence without the need to reduce environmental noise.

Such noise-protected molecular qubits, which can be remotely controlled with light, hold promise for applications in nanoscale sensing in intrinsically noisy environments such as biological cells. Here, the versatility enabled by chemically synthesized qubits appears particularly exciting for future advancements.

Key Image

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 12, Iss. 3 — July - September 2022

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review X

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×