Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 17, 2022

Concepts for millimeter wave-based detection of African trypanosomes in field-compatible liquid systems

  • Mario Mueh ORCID logo EMAIL logo , Robert Knieß EMAIL logo , H. Ulrich Göringer and Christian Damm
From the journal Frequenz

Abstract

Human African Trypanosomiasis (HAT) is caused by the African trypanosome, a single-cell parasite that proliferates in the blood and cerebrospinal fluid of infected patients. Diagnostic measures for this pathogen are currently not sufficiently robust and reliable enough to permit effective disease control procedures. As a consequence, we suggested the development of a new sensor type, combining the selectivity of parasite-specific nucleic acid aptamers with the sensitivity of resonant electromagnetic devices to capture and detect the disease-causing organism. While we accomplished the detection of parasite cells in dehydrated specimens, here we summarize our recent progress toward electromagnetic sensors capable of uncovering parasites in liquid patient samples. We present a technique for the removal of blood cells from blood specimens and the deposition of trypanosome cells on glass microfiber membranes for dielectric spectrometry. Liquid suspensions of trypanosomes are characterized to determine the actual dielectric properties of single parasites and lastly, we present two sensor concepts optimized for the detection in liquids, along with a fabrication technique for the integration of microfluidic sample confinements.


Corresponding author: Mario Mueh, Microwave Engineering, Ulm University, Ulm, Germany, E-mail: . ; and Robert Knieß, Molecular Genetics, Technische Universität Darmstadt, Darmstadt, Germany, E-mail:

Award Identifier / Grant number: DA1275/5-2

Award Identifier / Grant number: GO516/7-2

Acknowledgement

Andreas Völker is thanked for maintaining T. b. brucei stock cultures and Dr. Matthias Leeder for graphical input.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge funding of the ApTera II project (DA1275/5-2 and GO516/7-2) by the German Research Foundation (DFG) within the national priority program SPP1857 ESSENCE.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] K. Stuart, R. Brun, S. Croft, et al.., “Kinetoplastids: related protozoan pathogens, different diseases,” J. Clin. Investig., vol. 118, no. 4, p. 1301–1310, 2008, https://doi.org/10.1172/JCI33945.Search in Google Scholar PubMed PubMed Central

[2] WHO fact sheet no. 259 (03/2014) [Online]. Available at: http://www.who.int/mediacentre/factsheets/fs259/en/.Search in Google Scholar

[3] P. Büscher, G. Cecchi, V. Jamonneau, and G. Priotto, “Human african trypanosomiasis,” Lancet, vol. 390, no. 10110, p. 2397–2409, 2017.10.1016/S0140-6736(17)31510-6Search in Google Scholar PubMed

[4] R. Brun, J. Blum, F. Chappuis, and C. Burri, “Human african trypanosomiasis,” Lancet, vol. 375, no. 9709, pp. 148–159, 2010, https://doi.org/10.1016/s0140-6736(09)60829-1.Search in Google Scholar

[5] D. Steverding, “Sleeping sickness and nagana disease caused by trypanosoma brucei,” in Arthropod borne diseases, 1st ed., C. B. Marcondes, Ed., Cham, Springer International Publishing, 2017, pp. 277–297.10.1007/978-3-319-13884-8_18Search in Google Scholar

[6] R. Knieß, M. Mueh, S. Sawallich, et al.., “Towards the development of THz-sensors for the detection of african trypanosomes,” Frequenz, vol. 72, nos. 3–4, p. 101, 2018.10.1515/freq-2018-0011Search in Google Scholar

[7] J. Mulindwa, K. Leiss, D. Ibberson, et al.., “Transcriptomes of Trypanosoma brucei rhodesiense from sleeping sickness patients, rodents and culture: effects of strain, growth conditions and RNA preparation methods,” PLoS Neglected Trop. Dis., vol. 12, no. 2, p. e0006280, 2018, https://doi.org/10.1371/journal.pntd.0006280.Search in Google Scholar PubMed PubMed Central

[8] S. M. Lanham, “Separation of trypanosomes from the blood of infected rats and mice by anion-exchangers,” Nature, vol. 218, no. 5148, p. 1273–1274, 1968, https://doi.org/10.1038/2181273a0.Search in Google Scholar PubMed

[9] V. Lejon, P. Büscher, R. Nzoumbou-Boko, et al.., “The separation of trypanosomes from blood by anion exchange chromatography: from Sheila Lanham’s discovery 50 years ago to a gold standard for sleeping sickness diagnosis,” PLoS Neglected Trop. Dis., vol. 13, no. 2, p. e0007051, 2019, https://doi.org/10.1371/journal.pntd.0007051.Search in Google Scholar PubMed PubMed Central

[10] W. H. Lumsden, C. D. Kimber, and M. Strange, “Trypanosoma brucei: detection of low parasitaemias in mice by a miniature anion-exchanger/centrifugation technique,” Trans. R. Soc. Trop. Med. Hyg., vol. 71, no. 5, pp. 421–424, 1977, https://doi.org/10.1016/0035-9203(77)90043-8.Search in Google Scholar PubMed

[11] J. C. M. Garnett and J. Larmor, “XII. Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. - Ser. A Contain. Pap. a Math. or Phys. Character, vol. 203, nos. 359–371, pp. 385–420, 1904.10.1098/rsta.1904.0024Search in Google Scholar

[12] M. Mueh, M. Maasch, M. Brecht, H. U. Göringer, and C. Damm, “Complex dielectric characterization of african trypanosomes for aptamer-based terahertz sensing applications,” in First IEEE MTT-S International Microwave Bio Conference, (IMBioC), 2017, pp. 1–4.10.1109/IMBIOC.2017.7965783Search in Google Scholar

[13] M. Mueh and C. Damm, “Spurious material detection on functionalized thin-film sensors using multiresonant split-rings,” in IEEE International Microwave Biomedical Conference, (IMBioC), 2018, pp. 196–198.10.1109/IMBIOC.2018.8428893Search in Google Scholar

[14] G. S. Fiorini and D. T. Chiu, “Disposable microfluidic devices: fabrication, function, and application,” Biotechniques, vol. 38, no. 3, pp. 429–446, 2005, https://doi.org/10.2144/05383rv02.Search in Google Scholar PubMed

[15] M. Maasch and C. Damm, “Sensitivity improvement of split-ring resonators for thin-film sensing using floating electrodes,” in 40th international conference on infrared, millimeter, and Terahertz waves (IRMMW-THz), vols. 1–1, 2015, pp. 2162–2027.10.1109/IRMMW-THz.2015.7327818Search in Google Scholar

[16] M. Maasch, M. Mueh, and C. Damm, “Sensor array on structured PET substrates for detection of thin dielectric layers at terahertz frequencies,” in IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 1030–1033.10.1109/MWSYM.2017.8058768Search in Google Scholar

[17] M. Mueh, P. Hinz, and C. Damm, “Single-substrate microfluidic systems on PET film for mm-wave sensors,” in IEEE MTT-S International Microwave Biomedical Conference,(IMBioC), 2020, pp. 1–3.10.1109/IMBIoC47321.2020.9385043Search in Google Scholar

[18] L. T. Phan, S. M. Yoon, and M.-W. Moon, “Plasma-based nanostructuring of polymers: a review,” Polymers, vol. 9, no. 9, 2017, https://doi.org/10.3390/polym9090417.Search in Google Scholar PubMed PubMed Central

[19] G. A. Cross, “Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei,” Parasitology, vol. 71, no. 3, pp. 393–417, 1975, https://doi.org/10.1017/s003118200004717x.Search in Google Scholar PubMed

[20] S. G. Grant, J. Jessee, F. R. Bloom, and D. Hanahan, “Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants,” Proc. Natl. Acad. Sci. U.S.A., vol. 87, no. 12, pp. 4645–4649, 1990, https://doi.org/10.1073/pnas.87.12.4645.Search in Google Scholar PubMed PubMed Central

[21] B. J. Thomas and R. Rothstein, “Elevated recombination rates in transcriptionally active DNA,” Cell, vol. 56, no. 4, pp. 619–630, 1989, https://doi.org/10.1016/0092-8674(89)90584-9.Search in Google Scholar PubMed

[22] R. Brun and M. Schönenberger, “Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication,” Acta Trop., vol. 36, no. 3, pp. 289–292, 1979.Search in Google Scholar

[23] H. Hirumi and K. Hirumi, “Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers,” J. Parasitol., vol. 75, no. 6, pp. 985–989, 1989, https://doi.org/10.2307/3282883.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/freq-2022-0113).


Received: 2022-05-30
Accepted: 2022-08-01
Published Online: 2022-08-17
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/freq-2022-0113/html
Scroll to top button