Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Serum PSA-based early detection of prostate cancer in Europe and globally: past, present and future

Abstract

In the pre-PSA-detection era, a large proportion of men were diagnosed with metastatic prostate cancer and died of the disease; after the introduction of the serum PSA test, randomized controlled prostate cancer screening trials in the USA and Europe were conducted to assess the effect of PSA screening on prostate cancer mortality. Contradictory outcomes of the trials and the accompanying overdiagnosis resulted in recommendations against prostate cancer screening by organizations such as the United States Preventive Services Task Force. These recommendations were followed by a decline in PSA testing and a rise in late-stage diagnosis and prostate cancer mortality. Re-evaluation of the randomized trials, which accounted for contamination, showed that PSA-based screening does indeed reduce prostate cancer mortality; however, the debate about whether to screen or not to screen continues because of the considerable overdiagnosis that occurs using PSA-based screening. Meanwhile, awareness among the population of prostate cancer as a potentially lethal disease stimulates opportunistic screening practices that further increase overdiagnosis without the benefit of mortality reduction. However, in the past decade, new screening tools have been developed that make the classic PSA-only-based screening an outdated strategy. With improved use of PSA, in combination with age, prostate volume and with the application of prostate cancer risk calculators, a risk-adapted strategy enables improved stratification of men with prostate cancer and avoidance of unnecessary diagnostic procedures. This combination used with advanced detection techniques (such as MRI and targeted biopsy), can reduce overdiagnosis. Moreover, new biomarkers are becoming available and will enable further improvements in risk stratification.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of the discovery and the use of PSA for prostate cancer screening.
Fig. 2: The number of PSA tests over time in Belgium53.
Fig. 3: Prostate cancer incidence over time in Belgium54 and the Netherlands55.
Fig. 4: Adapted algorithm of the risk-adapted strategy for the early detection of prostate cancer from the EAU88.

Similar content being viewed by others

References

  1. Stang, A. & Jöckel, K. H. The impact of cancer screening on all-cause mortality: what is the best we can expect? Dtsch. Arztebl Int. 115, 481–486 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. Loeb, S. et al. Overdiagnosis and overtreatment of prostate cancer. Eur. Urol. 65, 1046–1055 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aizer, A. A. et al. Cost implications and complications of overtreatment of low-risk prostate cancer in the United States. J. Natl Compr. Cancer Netw. 13, 61–68 (2015).

    Article  Google Scholar 

  4. Wang, M. C. et al. Purification of a human prostate specific antigen. Investig. Urol. 17, 159–163 (1979).

    CAS  Google Scholar 

  5. Papsidero, L. D. et al. A prostate antigen in sera of prostatic cancer patients. Cancer Res. 40, 2428–2432 (1980).

    CAS  PubMed  Google Scholar 

  6. Kuriyama, M. et al. Quantitation of prostate-specific antigen in serum by a sensitive enzyme immunoassay. Cancer Res. 40, 4658–4662 (1980).

    CAS  PubMed  Google Scholar 

  7. Kuriyama, M. et al. Use of human prostate-specific antigen in monitoring prostate cancer. Cancer Res. 41, 3874–3876 (1981).

    CAS  PubMed  Google Scholar 

  8. Nadler, R. B., Humphrey, P. A., Smith, D. S., Catalona, W. J. & Ratliff, T. L. Effect of inflammation and benign prostatic hyperplasia on elevated serum prostate specific antigen levels. J. Urol. 154, 407–413 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Ming-Chu, T. Prostate specific antigen (PSA): the historical perspective. MJM https://doi.org/10.26443/mjm.v2i2.564 (1996).

    Article  Google Scholar 

  10. Chu, T. M., Wang M. C. & Papsidero, L. Purified human prostate antigen United States Patent and Trademark Office. https://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=5&f=G&l=50&co1=AND&d=PTXT&s1=316954.AP.&OS=APN/316954&RS=APN/316954 (1984).

  11. Stamey, T. A. et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med. 317, 909–916 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Roth, J. A., Gulati, R., Gore, J. L., Cooperberg, M. R. & Etzioni, R. Economic analysis of prostate-specific antigen screening and selective treatment strategies. JAMA Oncol. 2, 890–898 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Catalona, W. J. et al. Measurement of prostate-specific antigen serum as a screening test for prostate cancer. N. Engl. J. Med. 324, 1156–1161 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Thompson, I. M., Ernst, J. J., Gangai, M. P. & Spence, C. R. Adenocarcinoma of the prostate: results of routine urological screening. J. Urol. 132, 690–692 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Schröder, F. H. et al. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 360, 1320–1328 (2009).

    Article  PubMed  Google Scholar 

  16. Andriole, G. L. et al. Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med. 360, 1310–1319 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hsing, A. W., Tsao, L. & Devesa, S. S. International trends and patterns of prostate cancer incidence and mortality. Int. J. Cancer 85, 60–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. RGHM Cremers, H. E. et al. Prostate cancer: trends in incidence, survival and mortality in the Netherlands, 1989–2006. Eur. J. Urol. 46, 2077–2087 (2010).

    Google Scholar 

  19. Roobol, M. J., Kirkels, W. J. & Schöder, F. H. Features and preliminary results of the Dutch centre of the ERSPC (Rotterdam, the Netherlands). BJU Int https://doi.org/10.1111/j.1464-410X.2003.04390.x (2004).

    Article  Google Scholar 

  20. National Cancer Institute. Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO). NIH https://prevention.cancer.gov/major-programs/prostate-lung-colorectal-and-ovarian-cancer-screening-trial (2020).

  21. The European Randomized study of Screening for Prostate Cancer. ERSPC Background. ERSPC https://www.erspc.org/prostate-cancer/erspc-background/#study-protocol (2021).

  22. Schröder, F. H. & Roobol, M. J. ERSPC and PLCO prostate cancer screening studies: what are the differences? Eur. Urol. 58, 46–52 (2010).

    Article  PubMed  Google Scholar 

  23. de Koning, H. J. et al. The efficacy of prostate-specific antigen screening: impact of key components in the ERSPC and PLCO trials. Cancer 124, 1197–1206 (2018).

    Article  PubMed  Google Scholar 

  24. Welch, H. G. & Albertsen, P. C. Reconsidering prostate cancer mortality — the future of PSA screening. N. Engl. J. Med. 382, 1557–1563 (2020).

    Article  PubMed  Google Scholar 

  25. Culp, M. B., Soerjomataram, I., Efstathiou, J. A., Bray, F. & Jemal, A. Recent global patterns in prostate cancer incidence and mortality rates. Eur. Urol. 77, 38–52 (2020).

    Article  PubMed  Google Scholar 

  26. Carioli, G. et al. European cancer mortality predictions for the year 2020 with a focus on prostate cancer. Ann. Oncol. 31, 650–658 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 71, 209–249 (2021).

    Google Scholar 

  28. U.S. Preventive Services Task Force. Screening for prostate cancer: recommendation and rationale. Ann. Intern. Med. 137, 915–916 (2002).

    Article  Google Scholar 

  29. U.S. Preventive Services Task Force. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. Ann. Intern. Med. 149, 185–191 (2008).

    Article  Google Scholar 

  30. Moyer, V. A. Screening for Prostate Cancer: US Preventive Services Task Force recommendation statement. Ann. Intern. Med. 157, 120–134 (2012).

    Article  PubMed  Google Scholar 

  31. Jemal, A., Culp, M. B., Ma, J., Islami, F. & Fedewa, S. A. Prostate cancer incidence 5 years after US Preventive Services Task Force recommendations against screening. J. Natl Inst. 113, 64–71 (2021).

    Article  Google Scholar 

  32. Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen. Prostate cancer screening with the PSA test. IQWIG https://www.iqwig.de/projekte/s19-01.html (2020).

  33. UK National Screening Committee. Screening for prostate cancer. UK National Screening Committee https://view-health-screening-recommendations.service.gov.uk/document/424/download (2020).

  34. Ilic, D. et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ 362, K3519 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tikkinen, K. et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a clinical practice guideline. BMJ 362, K3581 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lenzen-Schulte, M. Prostatakrebs-screening: Prüffall PSA-test. Dtsch. Arztebl 117, 1–2 (2020).

    Google Scholar 

  37. Shoag, J. E., Mittal, S., Hu, J. C. & Reevaluating, P. S. A. Testing rates in the PLCO trial. N. Engl. J. Med. 374, 1795–1796 (2016).

    Article  PubMed  Google Scholar 

  38. Tsodikov, A. et al. Reconciling the effects of screening on prostate cancer mortality in the ERSPC and PLCO trials. Ann. Intern. Med. 167, 449–455 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Grossman, D. C. et al. Screening for prostate cancer: US preventive services task force recommendation statement. JAMA 319, 1901–1913 (2018).

    Article  PubMed  Google Scholar 

  40. European Association of Urology. Archive of the Prostate Cancer guideline. EAU https://uroweb.org/guidelines/archive/prostate-cancer (2020).

  41. Martin, R. M. et al. CAP Trial Group effect of a low-intensity PSA-based screening intervention on prostate cancer mortality: the CAP randomized clinical trial. JAMA 319, 883–895 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hugosson, J. et al. Eighteen-year follow-up of the Göteborg randomized population-based prostate cancer screening trial: effect of sociodemographic variables on participation, prostate cancer incidence and mortality. Scand. J. Urol. 52, 27–37 (2018).

    Article  PubMed  Google Scholar 

  43. Hugosson, J. et al. A 16-yr follow-up of the European randomized study of screening for prostate cancer. Eur. Urol. 76, 43–51 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pinsky, P. F. et al. Extended follow-up for prostate cancer incidence and mortality among participants in the Prostate, Lung, Colorectal and Ovarian randomized cancer screening trial. BJU Int. 123, 854–860 (2019).

    Article  PubMed  Google Scholar 

  45. Roobol., M. J. Screening for prostate cancer: are organized screening programs necessary? Trans. Androl. Urol. 7, 4–11 (2018).

    Article  Google Scholar 

  46. Heijnsdijk, E. A. M. et al. Quality-of-life effects of prostate-specific antigen screening. N. Engl. J. Med. 367, 595–605 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. RIZIV/INAMI, National Institute for Health and Disability Insurance (NIHDI), Nomenclature of medical acts in Belgium, Chapter V, 11 clinical biology (2021).

  48. Heidenreich, A. et al. Early detection of prostate cancer: European Association of Urology recommendation. Eur. Urol. 64, 347–354 (2013).

    Article  PubMed  Google Scholar 

  49. Yard, D. H. PSA testing: why the U.S. and Europe differ. Renal & Urology News https://www.renalandurologynews.com/home/news/urology/prostate-cancer/psa-testing-why-the-u-s-and-europe-differ/ (2011).

  50. Ciatto, S. et al. Contamination by opportunistic screening in the European Randomized Study of Prostate Cancer Screening. BJU Int. 92 (Suppl 2), 97–100 (2003).

    Article  PubMed  Google Scholar 

  51. Pinsky, P. F. et al. Assessing contamination and compliance in the prostate component of the prostate, lung, colorectal, and ovarian (PLCO) cancer screening trial. Clin. Trials 7, 303–311 (2010).

    Article  PubMed  Google Scholar 

  52. Clift, A. K., Coupland, C. A. C. & Hippisley-Cox, J. Prostate-specific antigen testing and opportunistic prostate cancer screening: a cohort study in England, 1998–2017. Br. J. Gen. Pract. 71, e157–e165 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rijksinstituut voor Ziekte-en Invaliditeitsverzekering (RIZIV/INAMI) statistical department. Statistieken geneeskundige verzorging https://www.riziv.fgov.be/nl/statistieken/geneesk-verzorging/Paginas/default.aspx (2020).

  54. Belgian Cancer Registry. Cancer Fact Sheet: Prostate Cancer. Belgian Cancer Registry https://kankerregister.org/media/docs/CancerFactSheets/2019/Cancer_Fact_Sheet_ProstateCancer_2019.pdf (2019).

  55. Integraal Kankercentrum Nederland. Prostaatkanker in Nederland. Integraal Kankercentrum Nederland https://iknl.nl/prostaatkanker-in-nederland (2020).

  56. Fleshner, K., Carlsson, S. V. & Roobol, M.J. The effect of the USPSTF PSA screening recommendation on prostate cancer incidence patterns in the USA. Nat. Rev. Urol. 14, 26–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Bandini, M. et al. Increase in the annual rate of newly diagnosed metastatic prostate cancer: a contemporary analysis of the surveillance, epidemiology and end result database. Eur. Urol. Oncol. 1, 314–320 (2018).

    Article  PubMed  Google Scholar 

  58. Siegel, D. A., O’Neil, M. E., Richards, T. B., Dowling, N. F. & Weir, H. K. Prostate cancer incidence and survival, by stage and race/ethnicity — United States, 2001–2017. MMWR Morb. Mortal. Wkly. Rep. 69, 1473–1480 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ferlay, J. et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer 103, 356–387 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Sharma, V., Venkataramana, A., Comulada, W. S., Litwin, M. S. & Saigal, C. Association of reductions in PSA screening across states with increased metastatic prostate cancer in the United States. J. Clin. Oncol. 39, 228 (2021).

    Article  Google Scholar 

  61. Prostate Cancer UK. We call on UK to step up as new figures show prostate cancer now a bigger killer than breast cancer. Prostate Cancer UK https://prostatecanceruk.org/about-us/news-and-views/2018/2/we-call-on-uk-to-step-up-as-new-figures-show-prostate-cancer-now-a-bigger-killer-than-breast-cancer (2018).

  62. Butler, E. B., Kelly, S. P., Coupland, V. H., Rosenberg, P. S. & Cook, M. B. Fatal prostate cancer incidence trends in the United States and England by race, stage, and treatment. Br. J. Cancer 123, 487–494 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Arnsrud Godtman, R., Holmberg, E., Lilja, H., Stranne, J. & Hugosson, J. Opportunistic testing versus organized prostate-specific antigen screening: outcome after 18 years in the Göteborg randomized population-based prostate cancer screening trial. Eur. Urol. 68, 354–360 (2015).

    Article  PubMed  Google Scholar 

  64. Pickles, K., Carter, S. M. & Rychetnik, L. C. Doctors’ approaches to PSA testing and overdiagnosis in primary healthcare: a qualitative study. BMJ Open 5, e006367 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Guessous, I. et al. Prostate cancer screening in Switzerland: 20-year trends and socioeconomic disparities. Prev. Med. 82, 83–91 (2016).

    Article  PubMed  Google Scholar 

  66. Jessen, K., Sondergaard, J., Veldt Larsen, P. & Thomsen, J. L. Danish general practitioners’ use of prostate-specific antigen in opportunistic screening for prostate cancer: a survey comprising 174 GPs. Int. J. Fam. Med. https://doi.org/10.1155/2013/540707 (2013).

    Article  Google Scholar 

  67. Matti, B. & Zargar-Shoshtari, K. Opportunistic prostate cancer screening: a population-based analysis. Urol. Oncol. 38, 393–400 (2020).

    Article  PubMed  Google Scholar 

  68. Fossa, S. D. & Eri, L. M. Norske legers rutiner for opportunistisk screening for prostatekreft. Tidsskr. Nor. Laegeforen. 199, 3572–3576 (1999).

    Google Scholar 

  69. Bertuccio, P. et al. Mortality trends from urologic cancers in Europe over the period 1980–2017 and a projection to 2025. Eur. Urol. Oncol. 4, 677–696 (2021).

    Article  PubMed  Google Scholar 

  70. Patasius, A. & Smailyte, G. Changing incidence and stage distribution of prostate cancer in a Lithuanian population — evidence from national PSA-based screening program. Int. J. Environ. Res. Public Health 16, 4856 (2019).

    Article  PubMed Central  Google Scholar 

  71. Patasius, A. et al. Prostate cancer incidence and mortality in the Baltic states Belarus, the Russian Federation and Ukraine. BMJ Open. 9, e031856 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Moyer, V. A. & U.S. Preventive Services Task Force. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 157, 120–134 (2012).

    Article  Google Scholar 

  73. Basch, E. et al. Screening for prostate cancer with prostate-specific antigen testing: American Society of Clinical Oncology provisional clinical opinion. J. Clin. Oncol. 30, 3020–3025 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wolf, A. M. et al. American Cancer Society guideline for the early detection of prostate cancer: update 2010. CA Cancer J. Clin. 60, 70–98 (2010).

    Article  PubMed  Google Scholar 

  75. Carter, H. B. et al. Early detection of prostate cancer: AUA Guideline. J. Urol. 190, 419–426 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. National Comprehensive Cancer Network. Prostate Cancer Early Detection. NCCN http://www.nccn.org/professionals/physician_gls/pdf/prostate_detection.pdf (2021).

  77. Mottet, N. et al. EAU-EANM-ESTRO-SIOG Guidelines on Prostate Cancer — 2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 79, 243–262 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Rommel, F. M. et al. The use of prostate specific antigen and prostate specific antigen density in the diagnosis of prostate cancer in community based urology practice. J. Urol. 151, 88–93 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Nordström, T., Akre, O., Aly, M., Grönberg, H. & Eklund, M. Prostate-specific antigen (PSA) density in the diagnostic algorithm of prostate cancer. Prostate Cancer Prostatic Dis. 21, 57–63 (2018).

    Article  PubMed  Google Scholar 

  80. Abd-Alazeez, M. et al. The accuracy of multiparametric MRI in men with negative biopsy and elevated PSA level — can it rule out clinically significant prostate cancer? Urol. Oncol. 32, 45.e17–e22 (2014).

    Article  Google Scholar 

  81. Stichting Wetenschappelijk Onderzoek Prostaatkanker, Reeuwijk. Your Prostate Cancer Risk Calculator. prostatecancer-riskcalculator.com https://www.prostatecancer-riskcalculator.com/assess-your-risk-of-prostate-cancer (2022).

  82. Ankerst, D. P. et al. The Prostate Cancer Prevention Trial Risk Calculator 2.0 for the prediction of low- versus high-grade prostate cancer. Urology 83, 1362–1367 (2014).

    Article  PubMed  Google Scholar 

  83. Roobol., M. J. Rescreening policies and risk calculator. J. Nat. Rev. Urol. 11, 429–430 (2014).

    Article  Google Scholar 

  84. Louie, K. S., Seigneurin, A., Cathcart, P. & Sasieni, P. Do prostate cancer risk models improve the predictive accuracy of PSA screening? A meta-analysis. Ann. Oncol. 26, 848–864 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Stabile, A. et al. Multiparametric MRI for prostate cancer diagnosis: current status and future directions. Nat. Rev. Urol. 17, 41–61 (2020).

    Article  PubMed  Google Scholar 

  86. Alberts, A. R. et al. Prediction of high-grade prostate cancer following multiparametric magnetic resonance imaging improving the Rotterdam European Randomized study of screening for prostate cancer risk calculators. Eur. Urol. 75, 310–318 (2019).

    Article  PubMed  Google Scholar 

  87. Mottet N, et al. EAU guidelines: EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer (EAU Guidelines Office, 2019).

  88. Van Poppel, H. et al. Prostate-specific antigen testing as part of a risk-adapted early detection strategy for prostate cancer: European Association of Urology position and recommendations for 2021. Eur. Urol. 80, 703–711 (2021).

    Article  PubMed  Google Scholar 

  89. Schröder, F. H. et al. Screening for prostate cancer decreases the risk of developing metastatic disease: findings from the European randomized study of screening for prostate cancer (ERSPC). Eur. Urol. 62, 745–752 (2012).

    Article  PubMed  Google Scholar 

  90. Vickers, A. J. et al. A panel of kallikrein markers can reduce unnecessary biopsy for prostate cancer: data from the European randomized study of prostate cancer screening in Göteborg, Sweden. BMC Med. 6, 19 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Jansen, F. H. et al. Prostate-specific antigen (PSA) isoform p2PSA in combination with total PSA and free PSA improves diagnostic accuracy in prostate cancer detection. Eur. Urol. 57, 921–927 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Osses, D. F., Roobol, M. J. & Schoots., I. G. Prediction medicine: biomarkers, risk calculators and magnetic resonance imaging as risk stratification tools in prostate cancer diagnosis. Int. J. Mol. Sci. 20, 1637 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  93. Roobol, M. J. et al. Prediction of prostate cancer risk: the role of prostate volume and digital rectal examination in the ERSPC risk calculators. Eur. Urol. 61, 577–583 (2012).

    Article  PubMed  Google Scholar 

  94. Pereira-Azevedo, N. et al. Prospective evaluation on the effect of interobserver variability of digital rectal examination on the performance of the Rotterdam prostate cancer risk calculator. Int. J. Urol. 24, 826–832 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Ankerst, D. P. et al. Prostate Cancer Prevention Trial risk calculator 2.0 for the prediction of low- vs high-grade prostate cancer. Urology 83, 1362–1368 (2014).

    Article  PubMed  Google Scholar 

  96. Mannaerts, C. K. et al. Prostate cancer risk assessment in biopsy-naive patients: the Rotterdam prostate cancer risk calculator in multiparametric magnetic resonance imaging-transrectal ultrasound (TRUS) fusion biopsy and systematic TRUS biopsy. Eur. Urol. Oncol. 1, 109–117 (2018).

    Article  PubMed  Google Scholar 

  97. Weinreb, J. C. et al. PI-RADS prostate imaging-reporting and data system: 2015, version 2. Eur. Urol. 69, 16–40 (2016).

    Article  PubMed  Google Scholar 

  98. Pagniez, M. A. et al. Predictive factors of missed clinically significant prostate cancers in men with negative magnetic resonance imaging: a systematic review and meta-analysis. J. Urol. 204, 24–32 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Ullrich, T. et al. Risk stratification of equivocal lesions on multiparametric magnetic resonance imaging of the prostate. J. Urol. 199, 691–698 (2018).

    Article  PubMed  Google Scholar 

  100. Shill, D. K., Roobol, M. J., Ehdaie, B., Vickers, A. J. & Carlsson, S. V. Active surveillance for prostate cancer. Trans. Androl. Urol. 10, 2809–2819 (2021).

    Article  Google Scholar 

  101. Desai, M. M. et al. Trends in incidence of metastatic prostate cancer in the US. JAMA Netw. Open 5, e222246 (2022).

    Article  PubMed  Google Scholar 

  102. Ross, L. E., Hall, I. J., Howard, D. L., Rim, S. H. & Richardson, L. C. Primary care physicians beliefs about prostate-specific antigen evidence uncertainty, screening efficacy, and test use. J. Natl Med. Assoc. 110, 491–500 (2018).

    PubMed  Google Scholar 

  103. Drummond, F. J., Carsin, A.-E., Sharp, L. & Comber, H. Factors prompting PSA-testing of asymptomatic men in a country with no guidelines: a national survey of general practitioners. BMC Fam. Pract. 10, 1–12 (2009).

    Article  Google Scholar 

  104. Kappen, S., Jurgens, V., Freitag, M. H. & Winter, A. Early detection of prostate cancer using prostate-specific antigen testing: an empirical evaluation among general practitioners and urologists. Cancer Manag. Res. 11, 3079–3097 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Cajka., P. Issues of an ageing population in European Union. Environ. Sci. Eng. B. 1, 966–970 (2012).

    Google Scholar 

  106. Rawla., P. Epidemiology of prostate cancer. World J. Urol. 10, 63–89 (2019).

    CAS  Google Scholar 

  107. Eurostat. Ageing Europe — looking at the lives of older people in the EU — 2019 edition. (2019)

  108. Getaneh, A. M. et al. Assessment of harms, benefits, and cost-effectiveness of prostate cancer screening: a micro-simulation study of 230 scenarios. Cancer Med. 9, 7742–7750 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Carlsson, S. V. et al. Estimating the harms and benefits of prostate cancer screening as used in common practice versus recommended good practice: a microsimulation screening analysis. Cancer 122, 3386–3393 (2016).

    Article  PubMed  Google Scholar 

  110. Sanghera, S. et al. Cost-effectiveness of prostate cancer screening: a systematic review of decision-analytical models. BMC Cancer 18, 84 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Callender, T. et al. Benefit, harm, and cost-effectiveness associated with magnetic resonance imaging before biopsy in age-based and risk-stratified screening for prostate cancer. JAMA Netw. Open 4, e2037657 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  112. de Rooij, M. et al. Cost-effectiveness of magnetic resonance (MR) imaging and MR-guided targeted biopsy versus systematic transrectal ultrasound-guided biopsy in diagnosing prostate cancer: a modelling study from a health care perspective. Eur. Urol. 66, 430–436 (2014).

    Article  PubMed  Google Scholar 

  113. Yusuf, S. et al. Modifiable risk factors, cardiovascular disease, and mortality in 155722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet 395, 795–808 (2020).

    Article  PubMed  Google Scholar 

  114. Grönberg, H. et al. Prostate cancer screening in men aged 50–69 years (STHLM3): a prospective population-based diagnostic study. Lancet Oncol. 16, P1667–P1676 (2015).

    Article  Google Scholar 

  115. Mortezavi, A. et al. Head-to-head comparison of conventional, and image- and biomarker-based prostate cancer risk calculators. Eur. Urol. Focus. 7, 546–553 (2021).

    Article  PubMed  Google Scholar 

  116. Eklund, M. et al. The Stockholm-3 (STHLM3) model can improve prostate cancer diagnostics in men aged 50–69 yr compared with current prostate cancer testing. Eur. Urol. Focus. 4, 707–710 (2018).

    Article  PubMed  Google Scholar 

  117. Eklund, M. et al. MRI-targeted or standard biopsy in prostate cancer screening. N. Engl. J. Med. 385, 908–920 (2021).

    Article  PubMed  Google Scholar 

  118. Twilt, J. J. et al. Artificial intelligence based algorithms for prostate cancer classification and detection on magnetic resonance imaging: a narrative review. Diagnostics 11, 959 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Knaapila, J. et al. Negative predictive value of biparametric prostate magnetic resonance imaging in excluding significant prostate cancer: a pooled data analysis based on clinical data from four prospective, registered studies. Eur. Urol. Focus. 7, 522–531 (2021).

    Article  PubMed  Google Scholar 

  120. Wallström, J. et al. Bi- or multiparametric MRI in a sequential screening program for prostate cancer with PSA followed by MRI? Results from the Goteborg prostate cancer screening 2 trial. Eur. Radiol. 31, 8692–8702 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Remmers, S. & Roobol, M. J. Personalized strategies in population screening for prostate cancer. Int. J. Cancer 147, 2977–2987 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Van Poppel, H. et al. A European model for an organised risk-stratified early detection programme for prostate cancer. Eur. Urol. Oncol. 5, P731–P739 (2021).

    Article  Google Scholar 

  123. European Association of Urology. Information for patients: prostate cancer. EAU https://patients.uroweb.org/wp-content/uploads/2018/12/12-July-2018_Prostate-cancer.pdf (2014).

  124. National Health Service. PSA testing and prostate cancer: advice for well men aged 50 and over. NHS https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/856976/PSA_testing_for_prostate_cancer_information_for_well_men.pdf (2020).

  125. Xavier, R. et al. Risk prediction tools in cardiovascular disease prevention: a report from the ESC Prevention of CVD Programme led by the European Association of Preventive Cardiology (EAPC) in collaboration with the Acute Cardiovascular Care Association (ACCA) and the Association of Cardiovascular Nursing and Allied Professions (ACNAP). Eur. J. Prev. Cardiol. 26, 1534–1544 (2019).

    Article  Google Scholar 

  126. Mishra, S. C. A discussion on controversies and ethical dilemmas in prostate cancer screening. J. Med. Ethics 47, 152–158 (2021).

    Article  Google Scholar 

  127. Légaré, F. & Thompson-Leduc, P. Twelve myths about shared decision making. Patient Educ. Couns. 96, 281–286 (2014).

    Article  PubMed  Google Scholar 

  128. Roobol, M. J. Active surveillance for prostate cancer — will the discoveries of the last 5 years change the future? Transl. Androl. Urol. 10, 2828–2831 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.V.P., R.H. and M.R. researched data for the article. H.V.P., T.A., P.B., R.H. and M.R. contributed substantially to discussion of the content. H.V.P., R.H., M.R. and S.C. wrote the article. H.V.P., T.A., P.B., R.H. and M.R. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Hendrik Van Poppel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Quoc-Dien Trinh, Mara Koelker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Disclaimer

Where authors are identified as personnel of the International Agency for Research on Cancer or the World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer or the World Health Organization.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

EU4Health: https://health.ec.europa.eu/funding/eu4health-programme-2021-2027-vision-healthier-european-union_en

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Poppel, H., Albreht, T., Basu, P. et al. Serum PSA-based early detection of prostate cancer in Europe and globally: past, present and future. Nat Rev Urol 19, 562–572 (2022). https://doi.org/10.1038/s41585-022-00638-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-022-00638-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing