Skip to main content
Log in

Regulation of Ash-fusion Behaviors for High Ash-fusion-temperature Coals in the Huainan & Huaibei Mining Area by Flux Addition

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

To produce coal with a high ash fusion temperature (AFT) as the raw material for gasification, the addition of fluxes is often adopted. In this paper, the ash chemistry of coals from the Huainan–Huaibei mining area (Zhuji and Taoyuan) was analysed to investigate the mechanisms of the composition modulation and, subsequently, the ash melting behaviour of coals with high-ash melting points in relation to non-pure matter fluxes. The chemical composition of the mixed ash was studied via X-ray powder diffractometry using normalised reference intensity ratio software, with the mineral transformation behaviour obtained using a scanning electron microscope analyser equipped with an energy-dispersive X-ray spectrometer and summarised using FactSage8.1 software analysis. For coals from Taoyuan and Zhuji, which have high silica–aluminium oxide content, the AFTs were significantly reduced when flux additions of 6% were used to meet the requirements of the entrained flow gasifier. To balance the gasification requirements and the controlled addition, the optimum addition level for the two high-ash-melting-point coals is 5–6%. The increase in flux addition leads to the conversion of high-melting-point mullite, sillimanite and quartz to amorphous materials, which reduces the corresponding AFTs, with the amorphous materials subsequently producing a liquid phase with a content that reflects the change in AFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. BP Statistical Review of World Energy. https://www.bp.com/en/global/corporate/energy–economics/statistical–review–of–world–energy.html

  2. Xie, K., Chinese J. Chem. Eng., 2021, vol. 35, p. 62.

    Article  CAS  Google Scholar 

  3. Xu, J. Yang, Y., and Li, Y.-W., Fuel, 2015, vol. 152, p. 122.

    Article  CAS  Google Scholar 

  4. Wang, M., Wan, Y., Guo, Q., Bai, Y., Yu, G., Liu, Y., Zhang, H., Zhang, S., and Wei, J., Fuel, 2021, vol. 304, p. 121517.

  5. Baoliang, X., Hanxu, L., Lirui, M., Chengli, W., and Facun, J., J. Mater. Eng. Perform., 2021.

  6. Kong, L., Bai, J., Bai, Z., Guo, Z., and Li, W., Fuel, 2013, vol 109, p. 76.

    Article  CAS  Google Scholar 

  7. Li, J., Du, M.-F., Zhang, Z.-X., Guan, R.-Q., Chen, Y.-S., and Liu, T.-Y., Energy Fuels, 2009, vol. 23, no. 2, p. 704.

    Article  CAS  Google Scholar 

  8. Wang, Y., Deng, H., and Ren, Q., Energy Fuels, 2019, vol. 33, no. 2, p. 747.

    Article  CAS  Google Scholar 

  9. Cheng, X., Wang, Y., Lin, X., Bi, J., Zhang, R., and Bai, L., Energy Fuels, 2017, vol. 31, no. 7, p. 6748.

    Article  CAS  Google Scholar 

  10. Li, F., Fan, H., and Fang, Y., Energy & Fuels, 2015, vol. 29, no. 12, p. 7816.

    Article  CAS  Google Scholar 

  11. Shen, Z., Li, R., Liang, Q., Xu, J.-L., and Liu, H., Energy & Fuels, 2016, vol. 30.

  12. Qiu, J.-R., Li, F., Zheng, Y., Zheng, C.-G., and Zhou, H.-C., Fuel, 1999, vol. 78, p. 963.

    Article  CAS  Google Scholar 

  13. Li, B. X. and Zhang, J. Y., Modern Chem. Ind., 2005, vol. 25, p. 22.

    Google Scholar 

  14. Unuma, H., Takeda, S., Tsurue, T., Ito, S., and Sayama, S., Fuel, 1986, vol. 65, p. 1505.

    Article  CAS  Google Scholar 

  15. Waanders, F. B. and Govender, A, Hyperfine Interact., 2005, vol. 166, p. 687.

    Article  CAS  Google Scholar 

  16. Bryant, G. W., Browning, G. J., Emanuel, H., Gupta, S. K., Gupta, R. P., Lucas, J. A., and Wall, T. F., Energy Fuels, 2000, vol. 14, p. 316.

    Article  CAS  Google Scholar 

  17. Van Dyk, J. C., Miner. Eng., 2006, vol. 19, p. 280.

    Article  CAS  Google Scholar 

  18. Shen, M., Qiu, K., Zhang, L., Huang, Z., Wang, Z., and Liu, J., Energies, 2015, vol. 8, p. 4735.

    Article  CAS  Google Scholar 

  19. Song, W. J., Tang, L. H., Zhu, X. D., Wu, Y. Q., Zhu, Z. B., and Koyama, S., Energy & Fuels, 2010, vol. 24, no. 1, p. 182.

    Article  CAS  Google Scholar 

  20. Hurst, H. J., Novak, F., and Patterson, J. H., Fuel, 1999, vol. 78, no. 15, p. 1831.

    Article  CAS  Google Scholar 

  21. Kong, L., Bai, J., Li, W., Wen, X., Li, X., Bai, Z., Guo, Z., and Li, H., Fuel, 2015, vol. 158, p.968.

    Article  CAS  Google Scholar 

  22. Wang, D. C., Liang, Q. F., Gong, X., Liu, H. F., and Liu, X., J. Fuel Chem. Technol., 2015, vol. 43, p. 153.

    Google Scholar 

  23. Shi, W., Bai, J., Kong, L., Zhao, H., Guhl, S., Li, H., Bai, Z., Li, P., Meyer, B., and Li, W., Fuel, 2020, vol. 260, p. 116369.

  24. Ge, Z., Kong, L., Bai, J., Zhao, H., and Li, W., Fuel. 2019, vol. 258, p. 116129.

  25. Ge, Z., Kong, L., Bai, J., Chen, X., He, C., Li, H., Bai, Z., Li, P., and Li, W., Fuel Process. Technol., 2018, vol. 181, p. 352.

    Article  CAS  Google Scholar 

  26. Weiqi, L. and Guangzhou, C., Bull. Environ. Contam. Tox., 2021, vol. 107, no. 6, p. 1243.

    Article  CAS  Google Scholar 

  27. Wang, G., Ju, Y., Bao, Y., Yan, Z., Li, X., Bu, H., and Li, Q., Energy & Fuels, 2014, vol. 28, no. 8, p. 5031.

    Article  CAS  Google Scholar 

  28. Wu, X., Zhang, Z., Piao, G., He, X., Chen, Y., Kobayashi, N., Mori, S., and Itaya, Y., Energy & Fuels, 2009, vol. 23, no. 5, p. 2420.

    Article  CAS  Google Scholar 

  29. Li, F., Li, Z., Huang, J., and Fang, Y., Appl. Energy, 2014, vol. 131, p. 279.

    Article  CAS  Google Scholar 

  30. Vassilev, S. V., Kitano, K., and Vassileva, C. G., Fuel, 1996, vol. 75, p. 1537.

    Article  CAS  Google Scholar 

  31. Van Dyk, J. C., Melzer, S., and Sobiecki, A., Miner. Eng, 2006, vol. 19, p. 1126.

    Article  CAS  Google Scholar 

  32. Bai, J., Li, W., and Li, B., Fuel, 2008, vol. 87, no. 4, p. 583.

    Article  CAS  Google Scholar 

  33. Matjie, R. H., Li, Z., Ward, C. R and French, D., Fuel, 2008, vol. 87, no. 6, p. 857.

    Article  CAS  Google Scholar 

  34. Ward, C. R. and French, D., Fuel, 2006, vol. 85, no. 16, p. 2268.

    Article  CAS  Google Scholar 

  35. Skodras, G. and Sakellaropoulos, G. P., Fuel Process. Technol., 2002, vol. 77, p. 151.

    Article  Google Scholar 

  36. Ren., X., Zhang, W., and Ouyang, S., J. Chin. Ceram. Soc., 2012, vol. 40, p. 664.

  37. Bai, J., Li, W., and Bai, Z., Energy & Fuels, 2011, vol. 25, no. 3, p. 1127.

    Article  CAS  Google Scholar 

  38. Wang, S., Jiang, X. M., Han, X. X., and Wang, H., Energy & Fuels, 2008, vol. 22, no. 4, p. 2229.

    Article  CAS  Google Scholar 

  39. Xie, L., Xu, L., and Ma, X., Energy & Fuels, 2020, vol. 34, no. 2, p. 1355.

    Article  CAS  Google Scholar 

  40. Wang, H., Li, C., Peng, Z., and Zhang, S., Therm. Anal. Calorim., 2011, vol. 105, no. 1, p. 157.

    Article  CAS  Google Scholar 

  41. Yang, J., Xiao, B., and Boccaccini, A. R., Fuel, 2009, vol. 88, no. 7, p. 1275.

    Article  CAS  Google Scholar 

  42. Kong, L., Bai, J., Li, W., Wen, X., Li, X., Bai, Z., Guo, Z., and Li, H., Fuel, 2016, vol. 179, p. 10.

    Article  CAS  Google Scholar 

  43. Yang, J., Xiao, B., and Boccaccini, A. R., Fuel, 2009, vol. 88, no. 7, p. 1275.

    Article  CAS  Google Scholar 

  44. Wu, X., Zhang, Z., Chen, Y., Zhou, T., Fan, J., Piao, G., Kobayashi, N., Mori, S., and Itaya, Y., Fuel Process. Technol., 2010, vol. 91, no. 11, p. 1591.

    Article  CAS  Google Scholar 

  45. Li, F., Fan, H., and Fang, Y., Energy & Fuels, 2015, vol. 29, p. 7816.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the National Key R&D Program Project [Grant 2019YFC1904304], Foundation of Provincial Natural Science Research Project of Anhui Colleges [Grant KJ2020A0278] and Anhui University of Technology Postgraduate Innovation Fund Project [Grant 2021CX1002].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wu Chengli or Jiao Facun.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baoliang, X., Chengli, W., Xingzhao, Z. et al. Regulation of Ash-fusion Behaviors for High Ash-fusion-temperature Coals in the Huainan & Huaibei Mining Area by Flux Addition. Solid Fuel Chem. 56, 304–313 (2022). https://doi.org/10.3103/S0361521922040036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521922040036

Keywords:

Navigation