Skip to main content
Log in

Studying the Variation of Fundamental Constants at the Cosmic Ray Extremely Distributed Observatory

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The study of the variation of fundamental constants through time or in localized regions of space is one of the goals of the Cosmic Ray Extremely Distributed Observatory which consists of multiple detectors over the Earth. In this paper, the various effects which can be potentially identified through cosmic rays detections by CREDO are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. B. Ratra and P. J. E. Peebles, “Cosmological consequences of a rolling homogeneous scalar field,” Phys. Rev. D 37, 3406 (1988).

    Article  ADS  Google Scholar 

  2. J. P. Uzan, “Varying constants, gravitation and cosmology,” Living Rev. Rel. 14, 2 (2011).

    Article  Google Scholar 

  3. M. Gasperini, F. Piazza, and G. Veneziano, “Quintessence as a runaway dilaton,” Phys. Rev. D 65, 023508 (2002).

    Article  ADS  Google Scholar 

  4. N. Dhital et al., “Cosmic ray ensembles as signatures of ultra-high energy photons interacting with the solar magnetic field”; J. Cosmol. Astropart. Phys. 03, 038 (2022); arXiv:1811.10334.

  5. D. Alvarez-Castillo et al., in Proceedings of 37th International Cosmic Ray Conference (ICRC 2021), Berlin, 2021, PoS (ICRC2021) 457 (2021).

  6. P. Homola et al. (CREDO Collab.) “Cosmic ray extremely distributed observatory,” Symmetry 12, 1835 (2020).

    Article  Google Scholar 

  7. Z. Stuchlík, M. Kološ, and A. Tursunov, “Penrose process: Its variants and astrophysical applications,” Universe 7, 416 (2021).

    Article  ADS  Google Scholar 

  8. D. E. Alvarez-Castillo, “The energy budget of the transition of a neutron star into the third family branch,” Astron. Nachr. 342, 234–239 (2021).

    Article  ADS  Google Scholar 

  9. D. Blaschke, A. Ayriyan, D. E. Alvarez-Castillo, and H. Grigorian, “Was GW170817 a canonical neutron star merger? Bayesian analysis with a third family of compact stars,” Universe 6, 81 (2020).

    Article  ADS  Google Scholar 

  10. D. E. Alvarez-Castillo, J. Antoniadis, A. Ayriyan, D. Blaschke, V. Danchev, H. Grigorian, N. K. Largani, and F. Weber, “Accretion-induced collapse to third family compact stars as trigger for eccentric orbits of millisecond pulsars in binaries,” Astron. Nachr. 340, 878–884 (2019).

    Article  ADS  Google Scholar 

  11. V. V. Usov, “Photon splitting in the superstrong magnetic fields of pulsars,” Astrophys. J. Lett. 572, L87 (2002).

    Article  ADS  Google Scholar 

  12. M. Garny, M. Sandora, and M. S. Sloth, “Planckian interacting massive particles as dark matter,” Phys. Rev. Lett. 116, 101302 (2016).

    Article  ADS  Google Scholar 

  13. Y. S. Wu and Z. Wang, “The time variation of Newton’s gravitational constant in superstring theories,” Phys. Rev. Lett. 57, 1978 (1986).

    Article  ADS  Google Scholar 

  14. P. A. M. Dirac, “A new basis for cosmology,” Proc. R. Soc. Lond. A 165, 199-208 (1938).

    Article  ADS  Google Scholar 

  15. G. S. Bisnovatyi-Kogan, “Checking the variability of the gravitational constant with binary pulsars,” Int. J. Mod. Phys. D 15, 1047–1052 (2006).

    Article  ADS  Google Scholar 

  16. K. Greisen, “End to the cosmic ray spectrum?” Phys. Rev. Lett. 16, 748–750 (1966).

    Article  ADS  Google Scholar 

  17. G. T. Zatsepin and V. A. Kuzmin, “Upper limit of the spectrum of cosmic rays,” JETP Lett. 4, 78–80 (1966).

    ADS  Google Scholar 

  18. J. Solà, “Fundamental constants in physics and their time variation: Preface,” Mod. Phys. Lett. A 30, 1502004 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Jacobson, S. Liberati, and D. Mattingly, “Lorentz violation at high energy: Concepts, phenomena and astrophysical constraints,” Ann. Phys. 321, 150–196 (2006).

    Article  ADS  Google Scholar 

  20. L. Burderi et al. (GrailQuest Collab.), “GrailQuest: Hunting for atoms of space and time hidden in the wrinkle of space-time”; arXiv:1911.02154 [astro-ph.IM].

  21. S. Weinberg, “The cosmological constant problem,” Rev. Mod. Phys. 61, 1–23 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  22. J. Martin, “Everything you always wanted to know about the cosmological constant problem (but were afraid to ask),” C. R. Phys. 13, 566-665 (2012); arXiv: 1205.3365 [astroph.CO].

    Article  ADS  Google Scholar 

  23. S. Appleby and E. V. Linder, “The well-tempered cosmological constant,” J. Cosmol. Astropart. Phys. 7, 34 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  24. J. K. Webb, V. V. Flambaum, C. W. Churchill, M. J. Drinkwater, and J. D. Barrow, “Search for time variation of the fine structure constant,” Phys. Rev. Lett. 82, 884–887 (1999).

    Article  ADS  Google Scholar 

  25. H. Chand, R. Srianand, P. Petitjean, and B. Aracil, “Probing the cosmological variation of the fine-structure constant: Results based on VLT-UVES sample,” Astron. Astrophys. 417, 853 (2004).

    Article  ADS  Google Scholar 

  26. J. Mould and S. Uddin, “Constraining a possible variation of G with type Ia supernovae,” Publ. Astron. Soc. Austral 31, 15 (2014).

    Article  ADS  Google Scholar 

  27. J. D. Anderson, G. Schubert, V. Trimble, and M. R. Feldman, “Measurements of Newton’s gravitational constant and the length of day,” Europhys. Lett. 110, 10002 (2015).

    Article  ADS  Google Scholar 

  28. R. E. Eaves, “Constraints on variation in the speed of light based on gravitational constant constraints,” Mon. Not. R. Astron. Soc. 505, 3590–3595 (2021).

    Article  ADS  Google Scholar 

  29. L. Bibrzycki et al. (CREDO Collab.), “Machine learning aided noise filtration and signal classification for CREDO experiment,” arXiv:2110.00297 [physics.ins-det].

Download references

ACKNOWLEDGMENTS

D. A-C. thanks the organizers of the of International Conference on Precision Physics and Fundamental Physical Constants 2021 for their hospitality and attention during the on-site conference in Slovakia. The author acknowledges support from the Bogoliubov Laboratory of Theoretical Physics in order to attend this conference as well as from the Bogoliubov-Infeld program for collaboration between JINR and Polish Institutions and from the COST actions CA16214 (PHAROS) for networking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Alvarez Castillo.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez Castillo, D. Studying the Variation of Fundamental Constants at the Cosmic Ray Extremely Distributed Observatory. Phys. Part. Nuclei 53, 825–828 (2022). https://doi.org/10.1134/S1063779622040025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622040025

Navigation