Skip to main content
Log in

Hyperfine Spectroscopy of Antihydrogen, Hydrogen, and Deuterium

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The prospects of tests of CPT symmetry using precision spectroscopy of antihydrogen are discussed with special emphasis on the ground-state hyperfine structure, a measurement of which is the aim of the ASACUSA collaboration at the AD/ELENA facility of CERN. Ongoing parallel experiments using hyperfine spectroscopy of hydrogen and deuterium aiming at studying Lorentz invariance by determining coefficients of the Standard Model Extension framework are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. In the following, precision stands for, unless otherwise stated, relative precision.

REFERENCES

  1. E. Widmann, J. Eades, R. S. Hayano, M. Hori, D. Horváth, T. Ishikawa, B. Juhász, J. Sakaguchi, H. A. Torii, H. Yamaguchi, and T. Yamazaki, “Hyperfine Structure Measurements of Antiprotonic Helium and Antihydrogen,” in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, Ed. by S. G. Karshenboim, F. S. Pavone, F. Bassani, M. Inguscio, and T. W. Hänsch (Springer, Berlin–Heidelberg, 2001) pp. 528–542.

    Google Scholar 

  2. Y. Enomoto et al. (ASACUSA Cusp Collab.), “Synthesis of cold antihydrogen in a cusp trap,” Phys. Rev. Lett. 105, 243401 (2010).

    Article  ADS  Google Scholar 

  3. N. Kuroda et al. (ASACUSA Cusp Collab.), “A source of antihydrogen for in-flight hyperfine spectroscopy,” Nat. Commun. 5, 3089 (2014).

    Article  ADS  Google Scholar 

  4. B. Kolbinger et al. (ASACUSA Cusp Collab.), “Measurement of the principal quantum number distribution in a beam of antihydrogen atoms,” Eur. Phys. J. D 75, 91 (2021).

    Article  ADS  Google Scholar 

  5. M. Diermaier, C. B. Jepsen, B. Kolbinger, C. Malbrunot, O. Massiczek, C. Sauerzopf, M. C. Simon, J. Zmeskal, and E. Widmann, “In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy,” Nat. Commun. 8, 15749 (2017).

    Article  ADS  Google Scholar 

  6. P. Zyla et al. (Particle Data Group Collab.), “Review of particle physics,” Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

  7. C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S–2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).

    Article  ADS  Google Scholar 

  8. A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T.W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).

    Article  ADS  Google Scholar 

  9. S. Karshenboim, “Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants,” Phys. Rep. 422, 1—63 (2005).

    Article  ADS  Google Scholar 

  10. N. Bezginov, T. Valdez, M. Horbatsch, A. Marsman, A. C. Vutha, and E. A. Hessels, “A measurement of the atomic hydrogen Lamb shift and the proton charge radius,” Science 365, 1007–1012 (2019).

    Article  ADS  Google Scholar 

  11. M. Ahmadi et al. (ALPHA Collab.), “Characterization of the 1S–2S transition in antihydrogen,” Nature 557, 71–75 (2018).

    Article  ADS  Google Scholar 

  12. M. Ahmadi et al. (ALPHA Collab.), “Investigation of the fine structure of antihydrogen,” Nature 578, 375—380 (2020).

    Article  ADS  Google Scholar 

  13. M. Ahmadi et al. (ALPHA Collab.), “Observation of the hyperfine spectrum of antihydrogen,” Nature 548, 66–69 (2017).

    Article  ADS  Google Scholar 

  14. P. Crivelli, D. Cooke, and M. W. Heiss, “Antiproton charge radius,” Phys. Rev. D 94, 052008 (2016).

    Article  ADS  Google Scholar 

  15. S. Ulmer, C. Smorra, A. Mooser, K. Franke, H. Nagahama, G. Schneider, T. Higuchi, S. V. Gorp, K. Blaum, Y. Matsuda, W. Quint, J. Walz, and Y. Yamazaki, “High-precision comparison of the antiproton-to-proton charge-to-mass ratio,” Nature 524, 196–199 (2015).

    Article  ADS  Google Scholar 

  16. C. E. Carlson, V. Nazaryan, and K. Griffioen, “Proton structure corrections to electronic and muonic hydrogen hyperfine splitting,” Phys. Rev. A 78, 022517 (2008).

    Article  ADS  Google Scholar 

  17. C. Smorra, S. Sellner, M. J. Borchert, J. A. Harrington, T. Higuchi, H. Nagahama, T. Tanaka, A. Mooser, G. Schneider, M. Bohman, K. Blaum, Y. Matsuda, C. Ospelkaus, W. Quint, J. Walz, Y. Yamazaki, and S. Ulmer, “A parts-per-billion measurement of the antiproton magnetic moment,” Nature 550, 371–374 (2017).

    Article  ADS  Google Scholar 

  18. V. A. Kostelecký and R. Potting, “CPT, strings, and meson factories,” Phys. Rev. D 51, 3923–3935 (1995).

    Article  ADS  Google Scholar 

  19. D. Colladay and V. A. Kostelecký, “CPT violation and the Standard Model,” Phys. Rev. D 55, 6760–6774 (1997).

    Article  ADS  Google Scholar 

  20. D. Colladay and V. Kostelecký, “Lorentz-violating extension of the Standard Model,” Phys. Rev. D 58, 116002 (1998).

    Article  ADS  Google Scholar 

  21. V. A. Kostelecký and N. Russell, “Data tables for Lorentz and CPT violation,” Rev. Mod. Phys. 83, 11–32 (2011).

    Article  ADS  Google Scholar 

  22. V. A. Kostelecký and N. Russell, “Data tables for Lorentz and CPT violation,” arXiv:0801.0287v14.

  23. M. Hori, H. Aghai-Khozani, A. Sótér, D. Barna, A. Dax, R. Hayano, T. Kobayashi, Y. Murakami, K. Todoroki, H. Yamada, D. Horváth, and L. Venturelli, “Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to-electron mass ratio,” Science 354, 610–614 (2016).

    Article  ADS  Google Scholar 

  24. J. Adam et al. (ALICE Collab.), “Precision measurement of the mass difference between light nuclei and anti-nuclei,” Nat. Phys. 11, 811–814 (2015).

    Article  Google Scholar 

  25. D. F. Phillips, M. A. Humphrey, E. M. Mattison, R. E. Stoner, R. F. C. Vessot, and R. L. Walsworth, “Limit on Lorentz and CPT violation of the proton using a hydrogen maser,” Phys. Rev. D 63, 111101 (2001).

    Article  ADS  Google Scholar 

  26. M. A. Humphrey, D. F. Phillips, E. M. Mattison, R. F. C. Vessot, R. E. Stoner, and R. L. Walsworth, “Testing CPT and Lorentz symmetry with hydrogen masers,” Phys. Rev. A 68, 063807 (2003).

    Article  ADS  Google Scholar 

  27. C. Malbrunot et al. (ASACUSA Cusp Collab.), “A hydrogen beam to characterize the ASACUSA antihydrogen hyperfine spectrometer,” Nucl. Instrum. Methods Phys. Res., Sect A 935, 110–120 (2019).

    Google Scholar 

  28. R. Bluhm, V. Kostelecký, and N. Russell, “CPT and Lorentz tests in hydrogen and antihydrogen,” Phys. Rev. Lett. 82, 2254–2257 (1999).

    Article  ADS  Google Scholar 

  29. C. Malbrunot et al. (ASACUSA Cusp Collab.), “The ASACUSA antihydrogen and hydrogen program: Results and prospects,” Phil. Trans. R. Soc. A 376, 20170273 (2017).

    Article  ADS  Google Scholar 

  30. E. Widmann et al. (ASACUSA Cusp Collab.), “Hyperfine spectroscopy of hydrogen and antihydrogen in ASACUSA,” Hyperfine Interact. 240, 5 (2019).

    Article  ADS  Google Scholar 

  31. V. A. Kostelecký and M. Mewes, “Fermions with Lorentz-violating operators of arbitrary dimension,” Phys. Rev. D 88, 096006 (2013).

    Article  ADS  Google Scholar 

  32. V. A. Kostelecký and A. J. Vargas, “Lorentz and CPT tests with hydrogen, antihydrogen, and related systems,” Phys. Rev. D 92, 056002 (2015).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thanks his colleagues of the ASACUSA collaboration for the continuous cooperation and many fruitful discussions, in particular T. Yamazaki, as well as extensive discussions with S. Karshenboim, V.A. Kostelecky, and R. Lehnert.

Funding

The work was supported by the Austrian Science Fund (FWF): W1252-N27, the Grant-in-Aid for Specially Promoted Research 24000008 of Japanese MEXT, Special Research Projects for Basic Science of RIKEN, and Università di Brescia and Istituto Nazionale di Fisica Nucleare.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to E. Widmann.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Widmann, E., for the ASACUSA Cusp Collaboration. Hyperfine Spectroscopy of Antihydrogen, Hydrogen, and Deuterium. Phys. Part. Nuclei 53, 790–794 (2022). https://doi.org/10.1134/S1063779622040141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622040141

Navigation