Skip to main content
Log in

A Method of Fast Calculaion of Lepton Magnetic Moments in Quantum Electrodynamics

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

A new method of divergence subtraction in Feynman parametric integrals is presented. The method is suitable for calculating the lepton anomalous magnetic moments (AMM) in quantum electrodynamics (QED). The subtraction procedure eliminates all divergences before integration and leads to a finite Feynman parametric integral for each individual Feynman diagram. It is based on a forest formula with linear operators applied to the Feynman amplitudes of ultraviolet-divergent subdiagrams. The formula is similar to Bogoliubov–Parasiuk–Hepp–Zimmermann summation; the difference is only in the linear operators used and in the way of combining them. The subtraction is equivalent to the on-shell renormalization from the beginning: for obtaining the final result we should only sum up the contributions of all Feynman diagrams after subtraction. The developed method is an improvement of the method presented by the author in 2016. The modification is specifically designed for calculating the contributions dependent on the relations of particle masses. In comparison with the old version, the new subtraction formula does not contain redundant terms and possesses some flexibility that can be used for improving the precision of calculations. Numerical test results are presented up to four loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. The value is the statistical average of the new experimental value and the old one [3].

  2. See the definitions in [12].

  3. See examples of applying Ward identities for individual diagrams in [13].

  4. The main path is a lepton path between external lepton lines.

REFERENCES

  1. D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse, “Cavity control of a single-electron quantum cyclotron: Measuring the electron magnetic moment,” Phys. Rev. A 83, 052122 (2011).

    Article  ADS  Google Scholar 

  2. B. Abi et al. (Muon g-2 Collab.), “Measurement of the positive muon anomalous magnetic moment to 0.46 ppm,” Phys. Rev. Lett. 126, 141801 (2021).

    Article  ADS  Google Scholar 

  3. G. W. Bennett et al. (Muon g-2 Collab.), “Final report of the E821 muon anomalous magnetic moment measurement at BNL,” Phys. Rev. D 73, 072003 (2006).

    Article  ADS  Google Scholar 

  4. T. Aoyama, T. Kinoshita, and M. Nio, “Theory of the anomalous magnetic moment of the electron,” Atoms 7, 28 (2019).

    Article  ADS  Google Scholar 

  5. R. Bouchendira, P. Clade, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New determination of the fine structure constant and test of the quantum electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011).

    Article  ADS  Google Scholar 

  6. P. J. Mohr, D. B. Newell, and B. N. Taylor, “CODATA recommended values of the fundamental physical constants: 2014,” Rev. Mod. Phys. 88 035009 (2016).

    Article  ADS  Google Scholar 

  7. R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, “Measurement of the fine-structure constant as a test of the Standard Model,” Science 360, 191 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  8. L. Morel, Z. Yao, P. Cladé, and S. Guellati-Khélifa, “Determination of the fine-structure constant with an accuracy of 81 parts per trillion,” Nature 588, 61–65 (2020).

    Article  ADS  Google Scholar 

  9. S. Volkov, “Calculating the five-loop QED contribution to the electron anomalous magnetic moment: Graphs without lepton loops,” Phys. Rev. D 100, 096004 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  10. T. Aoyama, N. Asmussen, et al., “The anomalous magnetic moment of the muon in the Standard Model,” Phys. Rep. 887, 1–166 (2020).

    Article  ADS  Google Scholar 

  11. T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, “Complete tenth-order QED contribution to the muon g–2,” Phys. Rev. Lett. 109, 111808 (2012).

    Article  ADS  Google Scholar 

  12. S. Volkov, “Subtractive procedure for calculating the anomalous electron magnetic moment in QED and its application for numerical calculation at the three-loop level,” J. Exp. Theor. Phys. 122, 1008–1031 (2016).

    Article  ADS  Google Scholar 

  13. S. Volkov, “Numerical calculation of high-order QED contributions to the electron anomalous magnetic moment,” Phys. Rev. D 98, 076018 (2018).

    Article  ADS  Google Scholar 

  14. S. Laporta and E. Remiddi, “The analytical value of the electron (g–2) at order α3 in QED,” Phys. Lett. B 379, 283 (1996).

    Article  ADS  Google Scholar 

  15. S. Laporta, “The analytic value of the corner ladder graphs contribution to the electron g–2 in QED,” Phys. Lett. B 343, 421–426 (1995).

    Article  ADS  Google Scholar 

  16. R. Barbieri, M. Caffo, E. Remiddi, S. Turrini, and D. Oury, “The anomalous magnetic moment of the electron in QED: Some more sixth order contributions in the dispersive approach,” Nucl. Phys. 144, 329—348 (1978).

    Article  ADS  Google Scholar 

  17. M. J. Levine and R. Roskies, “Analytic contribution to the g factor of the electron in sixth order,” Phys. Rev. D 14, 2191 (1976).

    Article  ADS  Google Scholar 

  18. M. J. Levine, R. C. Perisho, and R. Roskies, “Analytic contributions to the g factor of the electron,” Phys. Rev. D 13, 997 (1976).

    Article  ADS  Google Scholar 

  19. M. J. Levine, E. Remiddi, and R. Roskies, “Analytic contributions to the g factor of the electron in sixth order,” Phys. Rev. D 20, 2068–2076 (1979).

    Article  ADS  Google Scholar 

  20. M. J. Levine and R. Roskies, “Hyperspherical approach to quantum electrodynamics–sixth-order magnetic moment,” Phys. Rev. D 9, 421 (1974).

    Article  ADS  Google Scholar 

  21. R. Barbieri and E. Remiddi, “Sixth order electron and muon (g-2)/2 from second order vacuum polarization insertion,” Phys. Lett. B 49, 468 (1974).

    Article  ADS  Google Scholar 

  22. R. Barbieri, M. Caffo, and E. Remiddi, “A contribution to sixth order electron and muon anomalies,” Lett. Nuovo Cimento 9, 690 (1974).

    Article  Google Scholar 

  23. D. Billi, M. Caffo, and E. Remiddi, “A contribution to the sixth-order electron and muon anomalies,” Lett. Nuovo Cimento 4, 657–660 (1972).

    Article  Google Scholar 

  24. R. Barbieri, M. Caffo, and E. Remiddi, “A contribution to sixth-order electron and muon anomalies–II,” Lett. Nuovo Cimento 5, 769 (1972).

    Article  Google Scholar 

  25. J. Mignaco and E. Remiddi, “Fourth-order vacuum polarization contribution to the sixth-order electron magnetic moment,” Nuovo Cimento A 60, 519 (1969).

    Article  ADS  Google Scholar 

  26. S. Laporta and E. Remiddi, “The analytic value of the light-light vertex graph contributions to the electron (g–2) in QED,” Phys. Lett. B 265, 182–184 (1991).

    Article  ADS  Google Scholar 

  27. S. Laporta, “The analytical contribution of the sixth order graphs with vacuum polarization insertions to the muon g–2 in QED,” Nuovo Cimento A 106, 675–683 (1993).

    Article  ADS  Google Scholar 

  28. S. Laporta and E. Remiddi, “The analytical value of the electron light-light graphs contribution to the muon (g–2) in QED,” Phys. Lett. 301, 440—446 (1993).

    Article  Google Scholar 

  29. A. Czarnecki and M. Skrzypek, “The muon anomalous magnetic moment in QED: Three loop electron and tau contributions,” Phys. Lett. 449, 354—360 (1999).

    Article  Google Scholar 

  30. A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, “Anomalous magnetic moment with heavy virtual leptons,” Nucl. Phys. B 879, 1–18 (2014).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks Lidia Kalinovskaya, Gudrun Heinrich, Savely Karshenboim, Andrey Arbuzov for the important assistance, and Andrey Kataev for valuable consultations. Also, the author thanks the Laboratory of Information Technologies of JINR (Dubna, Russia) for providing an access to its computational resources and additionally the organizers of the conference FFK-2021 for providing a possibility to make a presentation. And beyond that, the author considers it proper to honor the memory of Fyodor Tkachov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Volkov.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, S. A Method of Fast Calculaion of Lepton Magnetic Moments in Quantum Electrodynamics. Phys. Part. Nuclei 53, 805–810 (2022). https://doi.org/10.1134/S106377962204013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377962204013X

Navigation