Skip to main content
Log in

Influence of Continuous Wave Interference on the Efficiency of the Non-Threshold Search Procedure for a Noise-Like Signal by Delay Time with Transition to the Frequency Domain

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A statistical study of the effectiveness of the non-threshold search procedure for a noise-like phase-shift keyed signal by the delay time is carried out during observation against the background of noise and single-tone continuous wave interference for various options for its frequency position. The formation of the output effect of the search procedure due to the transition to the frequency domain using the discrete Fourier transform is considered. Families of dependences of the probability of correct search performance on the dimensionless frequency detuning are obtained for various “interference/signal” (jam-to-signal) ratios. A significant variation of the permissible level of energy superiority of interference over the signal is shown at which the value of the selected quality indicator is preserved. Quantitative and qualitative conclusions are made about the effect of single-tone continuous wave interference on the efficiency of the non-threshold search procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. For example, 0.9, 0.99.

  2. If the central frequency of the NLS is unknown, procedure (5) can be performed sequentially or in parallel to test the required number of frequency hypotheses (frequency search).

REFERENCES

  1. V. P. Ipatov, Yu. M. Kazarinov, Yu. A. Kolomenskii, and Yu. D. Ul’yanitskii, Search, Detection and Measurement of Parameters of Signals in Radio Navigational Systems (Sovetskoe Radio, Moscow, 1975) [in Russian].

    Google Scholar 

  2. L. E. Varakin, Communications Systems with Noise-Like Signals (Radio i Svyaz’, Moscow, 1985) [in Russian].

    Google Scholar 

  3. R. C. Dixon, Spread Spectrum Systems (Wiley, New York, 1984, 2nd ed.; Svyaz’, Moscow, 1979).

  4. Understanding GPS: Principles and Applications, Ed. by E. D. Kaplan and C. J. Hegarty (Artech House, Boston, 2006).

    Google Scholar 

  5. GLONASS. Principles of Construction and Functioning, Ed. by A. I. Perov and V. N. Kharisov (Radiotekhnika, Moscow, 2010) [in Russian].

    Google Scholar 

  6. GNSS Interference Threats and Countermeasures, Ed. by F. Dovis, (Artech House, Boston, 2015).

    Google Scholar 

  7. E. V. Kuz’min and F. G. Zograf, Usp. Sovr. Radioelektron., No. 11, 137 (2016).

  8. J. W. Choi and N. I. Cho, Signal Process. 82, 2003 (2002).

    Article  Google Scholar 

  9. A. I. Perov and E. N. Boldenkov, Radiotekhnika, No. 7, 98 (2006).

  10. D. Borio, L. Camoriano, and L. Lo Presti, IEEE Syst. J. 2 (1), 38 (2008).

    Article  Google Scholar 

  11. E. L. Petrov, I. E. Petrov, and S. G. Abaturov, T‑Comm. No. 4, 21 (2010).

  12. Y.-R. Chien, IEEE Syst. J. 9, 451 (2015).

    Article  Google Scholar 

  13. V. A. Avdeev, A. S. Koshkarov, and E. V. Konnov, Zh. Radioelektron., No. 10, (2015). http://jre.cplire.ru/ jre/oct15/12/text.html.

  14. M. R. Mosavi, M. S. Moghaddasi, and M. J. Rezaei, Wireless Personal Commun. 90, 1563 (2016).

    Article  Google Scholar 

  15. H. Ren, Y. Wang, L. Jiang, and S. Wu, Science China Inf. Sci. 59, 082201 (2016).

    Article  Google Scholar 

  16. F. Chen, J. Nie, S. Ni, et al., Electron. Lett. 53, 274 (2017).

    Article  Google Scholar 

  17. P. Wang, E. Cetin, A. G. Dempster, et al., IEEE Trans. Aerosp. Electron. Syst. 54 (1), 416 (2018).

    Article  Google Scholar 

  18. S. A. Bel’kov and I. V. Malygin, Fiz. Voln. Protsess. & Radiotekh. Sist. 22 (2), 37 (2019).

    Google Scholar 

  19. Z. A. Khezzar, R. Benzid, and L. Saidi, Traitement du Signal 37 (2), 169 (2020).

    Article  Google Scholar 

  20. G. V. Kulikov and Chung Tien Do, Zh. Radioelektron., No. 4, (2020). http://jre.cplire.ru/jre/apr20/9/text.pdf.

  21. Q. Lv and H. Qin, IET Radar, Sonar Navigation 14, 1430 (2020).

    Article  Google Scholar 

  22. J. Xu, S. Ying, and H. Li, Mobile Network Appl. 25, 2336 (2020).

    Article  Google Scholar 

  23. M. Aghadadashfam, M. R. Mosavi, and M. J. Rezaei, GPS Solutions 24 (4), (2020).

  24. A. Wei and L. Shen, Frontiers Electr. Electron. Eng. China 3 (1), 79 (2008).

    Article  Google Scholar 

  25. A. T. Balaei, A. G. Dempster, and L. L. Presti, IEEE Trans. Aerosp. Electron. Syst. 45, 1418 (2009).

    Article  Google Scholar 

  26. D. Borio, IEEE Trans. Aerosp. Electron. Syst. 46 (1), 47 (2010).

    Article  Google Scholar 

  27. B. Motella, S. Savasta, D. Margaria, and F. Dovis, IEEE Trans. Aerosp. Electron. Syst. 47, 1416 (2011).

    Article  Google Scholar 

  28. Y. Liu, Y. Ran, T. Ke, and X. Hu, Signal Process. 91, 970 (2011).

    Article  Google Scholar 

  29. J. Jang, M. Paonni, and B. Eissfeller, IEEE Trans. Aerosp. Electron. Syst. 48, 243 (2012).

    Article  Google Scholar 

  30. A. N. Idris, D. Sathyamoorthy, A. M. Suldi, and J. R. A. Hamid, IOP Conf. Ser.: Earth and Environmental Sci. 18, 012035 (2014). https://doi.org/10.1088/1755-1315/18/1/012035

  31. M. Abdizadeh, J. T. Curran, and G. Lachapelle, IEEE Trans. Aerosp. Electron. Syst. 50, 2794 (2014).

    Article  Google Scholar 

  32. M. K. Bek, E. M. Shaheen, and S. A. Elgamel, Navigation. J. Inst. Navigation 62 (1), 23 (2015).

    Article  Google Scholar 

  33. Z. Qu, J. Yang, and J. Chen, Wireless Personal Commun. 82 (1), 473 (2015).

    Article  Google Scholar 

  34. P. D. Korataev, V. A. Mironov, and V. V. Nerovnyi, Teor. Tekhn. Radiosv., No. 1, 15 (2015).

  35. P. Wang, Y. Wang, X. Yu, and S. Wu, Wireless Personal Commun. 89, 405 (2016).

    Article  Google Scholar 

  36. M. K. Bek, E. M. Shaheen, and S. A. Elgamel, IET Radar, Sonar Navigation 10, 850 (2016).

    Article  Google Scholar 

  37. K. A. Neusypin, V. V. Sizykh, B. I. Shakhtarin, and V. A. Shevtsev, Mekhatron., Avtomatiz., Uprav. 17, 621 (2016).

    Google Scholar 

  38. V. V. Zelenevskii, A. V. Zelenevskii, A. Yu. Dzhelaukhyan, and E. V. Shmyrin, REDS: Telekommun. Ustrois. & Sist. 6 (1), 49 (2016).

    Google Scholar 

  39. G. V. Kulikov, Van Zung Nguen, A. V. Nesterov, and A. A. Lelyukh, Naukoem. Tekhnol., No. 11, 32 (2018).

  40. E. M. Shakhin, Giroskop. & Navigats. 26 (3), 40 (2018).

    Article  Google Scholar 

  41. E. M. Shaheen and S. A. Elgamel, Defense Technol. 15, 440 (2019).

    Article  Google Scholar 

  42. R. Du, L. Yue, S. Yao, et al., PIER M 79, 61 (2019).

    Article  Google Scholar 

  43. G. I. Tuzov, Statistical Theory of the Complex Signal Recept (Sovetskoe Radio, Moscow, 1977) [in Russian].

    Google Scholar 

  44. V. I. Borisov, V. M. Zinchuk, A. E. Limarev, et al., Interference Protection of Radio Communication Systems with Spectrum Spreading of Signals with Modulation of Carrier Frequency with Pseudorandom Sequence (Radio i Svyaz’, Moscow, 2003) [in Russian].

    Google Scholar 

  45. J. N. Daigle and N. Xiang, J. Acoust. Soc. Am. 119 (1), 330 (2006).

    Article  Google Scholar 

  46. J. Leclère, C. Botteron, R. J. Landry, and P.-A. Farine, Int. J. Navig. Obs. (2015). Article ID 765898. http://dx.doi.org/10.1155/2015/765898

  47. NAVSTAR GPS Space Segment/Navigation User Interfaces. (SAIC, Rev: M. El Segundo, 21 May 2021). http://www.gps.gov/technical/icwg/IS-GPS-200M.pdf.

  48. E. V. Kuz’min, Tsifrov. Obrab. Sign., No. 4, 13 (2020).

  49. P. W. Ward, Navigation. J. Inst. of Navigation 41, 367 (1994).

    Article  Google Scholar 

  50. G. I. Tuzov, V. A. Sivov, V. I. Prytkov, et al., Noise Stability of Radio System with Complex Signals, Ed. by G. I. Tuzov (Radio i Svyaz’, Moscow, 1985) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kuzmin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, E.V., Zograf, F.G. Influence of Continuous Wave Interference on the Efficiency of the Non-Threshold Search Procedure for a Noise-Like Signal by Delay Time with Transition to the Frequency Domain. J. Commun. Technol. Electron. 67, 965–972 (2022). https://doi.org/10.1134/S1064226922080101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922080101

Navigation