Skip to main content
Log in

Construction of Ray Trajectories in the Scattering of Electromagnetic Waves from the Inhomogeneous Plasma of the Jet of a Rocket Engine

  • ANTENNA AND FEEDER SYSTEMS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A model of the electron concentration in a rocket engine (RE) plume is considered and patterns of plasma frequency distribution are presented using the example of the third stage of a Peacekeeper intercontinental ballistic missile (ICBM). Pictures of 3D trajectories of rays scattered by the ICBM plume for a frequency of 0.4 GHz are presented. It is shown that the use of an algorithm for choosing the integration variable at each step and parallel vector calculations increases the efficiency of numerical electrodynamic modeling and allows one to perform a 3D analysis of the inhomogeneous plasma of the RE plume in the geometric-optical approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. E. McIver, in Proc. of the NASA Conf. on Communicating Through Plasmas of Atmospheric Entry and Rocket Exhaust, Hampton, 1964, p. 167.

  2. W. A. Wood and J. E. DeMore, in Proc. 6th Solid Propellant Rocket Conf. AIAA, Washington DC, Feb. 01–03, 1965 (AIAA, 1965), p. 183. https://doi.org/10.2514/6.1965-183

  3. A. J. Senol and G. L. Romine, J. Spacecr. Rockets 23, 39 (1986). https://doi.org/10.2514/3.25081

    Article  Google Scholar 

  4. T. Abe, K. Fujita, H. Ogawa, and I. Funaki, in Proc. 31st AIAA Plasmadynamics and Lasers Conf. 2000 (AIAA, 2000), p. 2484. https://doi.org/10.2514/6.2000-2484

  5. K. Kinefuchi, I. Funaki, and T. Abe, IEEE Trans. Antennas Propag. 58, 3282 (2010).

    Article  Google Scholar 

  6. K. Kinefuchi, I. Funaki, T. Shimada, and T. Abe, J. Spacecr. Rockets 47, 627 (2010).

    Article  Google Scholar 

  7. N. Coutu, W. Barrot, W. Engblom, and E. Perrell, in Proc. IEEE Southeastcon, Jacksonville, USA, Apr. 4–7, 2013 (IEEE, New York, 2013), p. 1. https://doi.org/10.1109/SECON.2013.6567408

  8. K. Kinefuchi, I. Funaki, and T. Abe, J. Spacecr. Rockets 50, 150 (2013). https://doi.org/10.2514/1.A32223

    Article  Google Scholar 

  9. R. K. McCargar, K. M. Siegrist, J. G. Reuster, et al., IEEE Trans. Antennas Propag. 66, 6531 (2020). https://doi.org/10.1109/TAP.2018.2845545

    Article  Google Scholar 

  10. K. Kinefuchi, H. Yamaguchi, M. Minami, et al., Acta Astronaut. 165, 373 (2019). https://doi.org/10.1016/j.actaastro.2019.09.025

    Article  Google Scholar 

  11. K. Kinefuchi, I. Funaki, H. Ogawa, et al., in Proc. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2009 (AIAA, 1986), p. 1386. https://doi.org/10.2514/6.2009-1386

  12. V. A. Kotel’nikov and M. V. Kotel’nikov, Trudy MAI, No. 50, 21 (2012).

  13. B. Sun, K. Xie, L. Shi, et al., IEEE Trans. Antennas Propag. 68, 8021 (2020). https://doi.org/10.1109/TAP.2020.2999661

    Article  Google Scholar 

  14. L. D. Smoot and D. L. Underwood, J. Spacecr. Rockets 3, 302 (1966). https://doi.org/10.2514/3.28444

    Article  Google Scholar 

  15. L. D. Smoot and T. J. Seliga, J. Spacecr. Rockets 4, 774 (1967). https://doi.org/10.2514/3.28950

    Article  Google Scholar 

  16. J. A. Blevins, R. A. Frederick, and H. W. Coleman, in Proc. 32nd Aerospace Sci. Meeting & Exhibit, Reno, Jan. 10 –13, 1994. https://doi.org/10.2514/6.1994-671

  17. V. A. Kotel’nikov, M. V. Kotel’nikov, and A. V. Morozov, Teplofizika Vysok. Temp. 54, 323 (2016).

    Google Scholar 

  18. V. A. Kotel’nikov, M. V. Kotel’nikov, and G. S. Filippov, Probl. Mashinostr. & Nadezh. Mashin, No. 6, 13 (2018).

    Google Scholar 

  19. É. Dieudonné, A. Kameni, L. Pichon, and D. Monchaux, Acta Astronaut. 158, 334 (2019). https://doi.org/10.1016/j.actaastro.2019.03.032

    Article  Google Scholar 

  20. V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasmas, 2nd ed. (Nauka, Moscow, 1967; Pergamon, Oxford, 1970).

  21. M. A. Heald and C. B. Wharton, Plasma Diagnostics with Microwaves (Wiley, New York, 1965; Atomizdat, Moscow, 1968).

  22. F. Chen, Introduction to Plasma Physics (Plenum, New York, 1984; Mir, Moscow, 1987).

  23. P. C. Clemmow and J. P. Dougherty, Electrodynamics of Particles and Plasmas (Addison-Wesley, Redwood City, Calif., 1990; Mir, Moscow, 1996).

  24. K. N. Klimov and B. V. Sestroretskii, J. Commun. Technol. Electron. 50, 591 (2005).

    Google Scholar 

  25. K. N. Klimov, T. V. Kamyshev, V. A. Ruchenkov, and B. V. Sestroretskii, J. Commun.Technol. Electron. 51, 725 (2006).

    Article  Google Scholar 

  26. K. N. Klimov, “Methodology of the numerical analysis in a time domain of two-dimensional impedance net models of antenna systems and electrodynamic objects of big dimension,” Doctoral Dissertation. Tech. (MIEM, Moscow, 2007).

  27. A. A. Samarskii, Theory of Difference Schemes (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  28. A. A. Samarskii, Methods of Solution of the Grid Equations (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  29. I. Yu. Kartsev, “Method of impedance and net function of Green for the solution of two-dimensional problems of diffraction,” Candidate’s Dissertation in Technical Sciences, (MEI, Moscow, 1991).

  30. M. T. Grossmann, E. Holzhauer, M. Hirsch, et al., in Proc. 3rd Reflectometry Work-shop for Fusion Plasma, Madrid, Spain. May 5–7, 1997, p. 115.

  31. Yu. A. Kravtsov and Yu. I. Orlov, Ray Optics of Nonuniform Mediums (Nauka, Moscow, 1980; Springer, Berlin, 1990).

  32. A. Yu. Kravtsov and Yu. I. Orlov, “Caustics, accidents and wave fields,” Usp. Mat. Nauk 141, 591 (1983).

    Article  Google Scholar 

  33. V. V. Perfil’ev, T. S. Stepanov, and K. N. Klimov, J. Commun.Technol. Electron. 61, 1362 (2016).

    Article  Google Scholar 

  34. K. N. Klimov and K. I. Konov, in Systems of Signal Synchronization, Generating and Processing in Telecommunications, Minsk, July 4–5, 2018, p. 1. https://doi.org/10.1109/synchroinfo.2018.8456987

  35. K. Klimov and K. Konov, in Proc. Int. Seminar on Electron Devices Design and Production, Prague, Apr. 23–24, 2019, p. 1. https://doi.org/10.1109/SED.2019.8798408

  36. K. N. Klimov, K. I. Konov, A. M. Belevtsev, et al., in Proc. SPIE Int. Soc. for Optical Engineering, Sep. 21–25, 2020, Vol. 11541, p. 1. https://doi.org/10.1117/12.2582075

  37. K. I. Konov and K.N. Klimov, Radiotekhnika 85, 69 (2021). https://doi.org/10.18127/j00338486-202108-08

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. I. Konov or K. N. Klimov.

Ethics declarations

The authors declare they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konov, K.I., Klimov, K.N. Construction of Ray Trajectories in the Scattering of Electromagnetic Waves from the Inhomogeneous Plasma of the Jet of a Rocket Engine. J. Commun. Technol. Electron. 67, 938–945 (2022). https://doi.org/10.1134/S1064226922080083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922080083

Navigation