Skip to main content
Log in

A New Strategy for Collaborative Utilization of Red Mud and Coal Fly Ash via Vacuum Reduction Technology

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

The clean recovery of red mud (RM) and coal fly ash (CFA) has drawn widespread attentions owing to the increasing awareness of environmental protection. In this study, a new strategy for recycling RM and CFA simultaneously by extracting valuable metallic elements from them was proposed. The process is mainly composed of two stages, e.g., vacuum carbothermal reduction and magnetic separation. The effects of RM/CFA ratio, duration, and temperature on the mineralogical evolution of RM and CFA during the vacuum reduction were investigated thoroughly. The results show that the Fe–Si alloys can be prepared effectively by the vacuum reduction of RM and CFA because the hematite (Fe2O3) in RM can react with the mullite (Al6Si2O13) in CFA to form Fe–Si alloys at a low temperature. Additionally, the produced Fe–Si alloys and the other valuable components can be separated through the magnetic separation, because of the strong magnetic property of the Fe–Si alloys. After separation, the magnetic portion was mainly composed of Fe5Si3 and FeSi phases, while the non-magnetic portion consisted of 64.04 wt% Al2O3, 7.49 wt% SiO2, and 10.35 wt% TiO2. The alumina/silica mass ratio (A/S) in the non-magnetic product achieved 8.55, which is similar to that of the high-quality bauxite ores and can be a raw material to produce alumina and enrich titanium by the Bayer process. This strategy takes full advantages of the valuable metals in the RM and CFA, which shows a good prospect for industrial application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sahu MK, Patel RK (2016) Chapter 19-Methods for utilization of red mud and its management. Environmental materials and waste. Academic Press, Boca Raton, pp 485–524. https://doi.org/10.1016/B978-0-12-803837-6.00019-6

    Book  Google Scholar 

  2. Evans K (2016) The history, challenges, and new developments in the management and use of Bauxite residue. J Sust Metall 2:316–331. https://doi.org/10.1007/s40831-016-0060-x

    Article  Google Scholar 

  3. Rivera RM, Ulenaers B, Ounoughene G, Binnemans K, Gerven TV (2018) Extraction of rare earths from bauxite residue (red mud) by dry digestion followed by water leaching. Miner Eng 119:82–92. https://doi.org/10.1016/j.mineng.2018.01.023

    Article  CAS  Google Scholar 

  4. Lyu F, Hu YH, Wang L, Sun W (2021) Dealkalization processes of bauxite residue: a comprehensive review. J Hazard Mater 403:123671. https://doi.org/10.1016/j.jhazmat.2020.123671

    Article  CAS  Google Scholar 

  5. Liu ZB, Li HX (2015) Metallurgical process for valuable elements recovery from red mud-a review. Hydrometallurgy 155:29–43. https://doi.org/10.1016/j.hydromet.2015.03.018

    Article  CAS  Google Scholar 

  6. Xue Y, Liu XM (2021) Detoxification, solidification and recycling of municipal solid waste incineration fly ash: a review. Chem Eng J 420:130349. https://doi.org/10.1016/j.cej.2021.130349

    Article  CAS  Google Scholar 

  7. Wang SH, Jin HX, Deng Y, Xiao YD (2021) Comprehensive utilization status of red mud in China: a critical review. J Clean Prod 289:125136. https://doi.org/10.1016/j.jclepro.2020.125136

    Article  CAS  Google Scholar 

  8. Khairul MA, Zanganeh J, Moghtaderi B (2019) The composition, recycling and utilisation of Bayer red mud. Resour Conserv Recycl 141:483–498. https://doi.org/10.1016/j.resconrec.2018.11.006

    Article  Google Scholar 

  9. Jayasankar K, Ray PK, Chaubey AK, Padhi A, Satapathy BK, Mukherjee PS (2012) Production of pig iron from red mud waste fines using thermal plasma technology. Int J Miner Metall Mater 19:679–684. https://doi.org/10.1007/s12613-012-0613-3

    Article  CAS  Google Scholar 

  10. Jamieson E, Jones A, Cooling D, Stockton N (2006) Magnetic separation of red sand to produce value. Miner Eng 19:1603–1605. https://doi.org/10.1016/j.mineng.2006.08.002

    Article  CAS  Google Scholar 

  11. Li YR, Wang J, Wang XJ, Luan ZK (2011) Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation. Physica C 471:91–96. https://doi.org/10.1016/j.physc.2010.12.003

    Article  CAS  Google Scholar 

  12. Samouhos M, Taxiarchou M, Pilatos G, Tsakiridis PE, Devlin E, Pissas M (2017) Controlled reduction of red mud by H2 followed by magnetic separation. Miner Eng 105:36–43. https://doi.org/10.1016/j.mineng.2017.01.004

    Article  CAS  Google Scholar 

  13. Yu ZL, Shi ZX, Chen YM, Niu YJ, Wang YX, Wan PY (2012) Red mud treatment using oxalic acid by UV irradiation assistance. Trans Nonferrous Met Soc China 22:456–460. https://doi.org/10.1016/S1003-6326(11)61198-9

    Article  CAS  Google Scholar 

  14. Yang Y, Wang XW, Wang MY, Wang HG, Xian PF (2015) Recovery of iron from red mud by selective leach with oxalic acid. Hydrometallurgy 157:239–245. https://doi.org/10.1016/j.hydromet.2015.08.021

    Article  CAS  Google Scholar 

  15. Mahinroosta M, Karimi Z, Allahverdi A (2020) Recycling of red mud for value-added applications: a comprehensive review. Encycl Renew Sustain Mater 2:561–582. https://doi.org/10.1016/B978-0-12-803581-8.11474-2

    Article  Google Scholar 

  16. Laxmidhar P, Subhakanta D (2020) Characterization and utilization of coal fly ash: a review. Emerg Mater Res 9:921–934. https://doi.org/10.1680/jemmr.18.00097

    Article  Google Scholar 

  17. Ji HY, Mi X, Tian QK, Liu CL, Yao JX, Ma SH, Zeng GS (2021) Recycling of mullite from high-alumina coal fly ash by a mechanochemical activation method: effect of particle size and mechanism research. Sci Total Environ 784:147100. https://doi.org/10.1016/j.scitotenv.2021.147100

    Article  CAS  Google Scholar 

  18. Wang C, Xu GG, Gu XJ, Gao YH, Zhao P (2021) High value-added applications of coal fly ash in the form of porous materials: a review. Ceram Int 47:22302–22315. https://doi.org/10.1016/j.ceramint.2021.05.070

    Article  CAS  Google Scholar 

  19. Sun Q, Tian S, Sun QW, Li B, Cai C, Yj X, Wei X, Mu QW (2019) Preparation and microstructure of fly ash geopolymer paste backfill material. J Clean Prod 225:376–390. https://doi.org/10.1016/j.jclepro.2019.03.310

    Article  CAS  Google Scholar 

  20. Pandey VC, Singh N (2010) Impact of fly ash incorporation in soil systems. Agric Ecosyst Environ 136:16–27. https://doi.org/10.1016/j.agee.2009.11.013

    Article  Google Scholar 

  21. Yang CN, Zhang JB, Hou XJ, Li SP, Li HQ, Zhu GY, Qi F (2021) Study on the correlation between Fe/Ti forms and reaction activity in high-alumina coal fly ash. Sci Total Environ 792:148419. https://doi.org/10.1016/j.scitotenv.2021.148419

    Article  CAS  Google Scholar 

  22. Ding J, Ma Sh, Shen S, Xie ZL, Zheng SL, Zhang Y (2017) Research and industrialization progress of recovering alumina from fly ash: a concise review. Waste Manage 60:375387. https://doi.org/10.1016/j.wasman.2016.06.009

    Article  CAS  Google Scholar 

  23. Yao ZT, Xia MS, Sarker PK, Chen T (2014) A review of the alumina recovery from coal fly ash, with a focus in China. Fuel 120:74–85. https://doi.org/10.1016/j.fuel.2013.12.003

    Article  CAS  Google Scholar 

  24. Liu CL, Zheng SL, Ma Sh, Luo Y, Ding J, Wang XH, Zhang Y (2018) A novel process to enrich alumina and prepare silica nanoparticles from high-alumina fly ash. Fuel Process Technol 173:40–47. https://doi.org/10.1016/j.fuproc.2018.01.007

    Article  CAS  Google Scholar 

  25. Xue Y, Yu WZ, Jiang WY, Wen L, You ZX, Lv XW (2019) A novel process to extract alumina and prepare Fe–Si alloys from coal fly ash. Fuel Process Technol 185:151–157. https://doi.org/10.1016/j.fuproc.2018.12.013

    Article  CAS  Google Scholar 

  26. Lv XD, Huang R, Wu QZ, Wu QH, Zhang JZ (2019) Volatilisation behaviour of iron, silicon and magnesium during vacuum carbothermal reduction of ilmenite concentrate. Can Metall Q 58:419–426. https://doi.org/10.1080/00084433.2019.1619062

    Article  CAS  Google Scholar 

  27. Xue Y, Yu WZ, Mei J, Jiang WY, Lv XW (2019) A clean process for alumina extraction and FeSi alloy preparation from coal fly ash via vacuum thermal reduction. J Clean Prod 240:118262. https://doi.org/10.1016/j.jclepro.2019.118262

    Article  CAS  Google Scholar 

  28. Lv W, Bai CG, Lv XW, Hu K, Lv XM, Xiang JY, Song B (2018) Carbothermic reduction of ilmenite concentrate in semi-molten state by adding sodium sulfate. Powder Technol 340:354–361. https://doi.org/10.1016/j.powtec.2018.09.043

    Article  CAS  Google Scholar 

  29. Mondillo N, Herrington R, Boni M (2021) Bauxites. In: Alderton D, Elias SA (eds) Encyclopedia of geology, 2nd edn. Elsevier Ltd., pp 694–707. https://doi.org/10.1016/B978-0-08-102908-4.00046-1

    Chapter  Google Scholar 

  30. Fan GQ, Dang J, Zhang R, Lv ZP, He WC, Lv XW (2021) A novel recycling approach for efficient extraction of titanium from high-titanium-bearing blast furnace slag. Waste Manage 120:626–634. https://doi.org/10.1016/j.wasman.2020.10.024

    Article  CAS  Google Scholar 

  31. Farzana R, Rajarao R, Sahajwalla V (2014) Synthesis of Fe–Si alloy using waste glass and plastic. Mater Lett 116:101–103. https://doi.org/10.1016/j.matlet.2013.10.105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 52074058 and U2003215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhou Yu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was João António Labrincha Batista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, P., Yu, W., Chen, H. et al. A New Strategy for Collaborative Utilization of Red Mud and Coal Fly Ash via Vacuum Reduction Technology. J. Sustain. Metall. 8, 1370–1380 (2022). https://doi.org/10.1007/s40831-022-00578-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-022-00578-w

Keywords

Navigation