Skip to main content
Log in

Analysis of Chernogorsk Coal before and after Oxidative Carbonization

  • COAL
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

The basic combustion characteristics and kinetic parameters of Chernogorsk coal are determined before and after carbonization. The method employed is thermal analysis in an oxidative atmosphere with fuel heating at 20°C/min. The following characteristics of fuel combustion are determined from the curves of mass loss, rate of mass variation, and differential scanning calorimetry: the ignition temperature; the combustion temperature; the maximum reaction rate and the corresponding temperature; and endothermal and exothermal effects. By the Coats–Redfern method, the basic kinetic parameters of the coal before and after carbonization are determined. By electron microscopy, the surface of the fuel particles is qualitatively assessed. The results may be used in the design of thermal and energy equipment. Coal carbonization increases the ignition temperature by 3% and the combustion temperature by 17%. The maximum reaction rate is decreased. The activation energy and preexponential factor are lower after carbonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Gür, T.M., Carbon dioxide emissions, capture, storage and utilization: review of materials processes and technologies, Progr. Energy Combust. Sci., 2022, vol. 89, p. 100965.  https://doi.org/10.1016/j.pecs.2021.100965

    Article  Google Scholar 

  2. Plakitkina, L.S. and Plakitkin, Yu.A., Paris agreement on climate change, COVID-19 and hydrogen energy—New realities of coal mining and consumption in the EU and Asia in the period until 2040, Gornya Promyshl., 2021, no. 1, pp. 83–90.  https://doi.org/10.30686/1609-9192-2021-1-83-90

  3. Borush, O.V., Shchinnikov, P.A., and Frantseva, A.A., Topping with a natural gas-fired combined cycle unit of a coal-fired cogeneration power plant with cross connections, Thermal Eng., 2021, vol. 68, pp. 65–71.  https://doi.org/10.1134/S0040601521010110

    Article  CAS  Google Scholar 

  4. Zia ur Rahman, Xuebin Wang, Jiaye Zhang, Zhiwei Yang, Gaofeng Dai, Piyush Verma, Hrvoje Mikulcic, Milan Vujanovic, Houzhang Tan, and Richard L. Axelbaum, Nitrogen evolution, NOx formation and reduction in pressurized oxy coal combustion, Renew. Sustainable Energy Rev., 2022, vol. 157, p. 112020.  https://doi.org/10.1016/j.rser.2021.112020

  5. Ryabov, G.A., A review of the research results into the technologies of solid-fuel combustion in a circulating fluidized bed conducted abroad and in Russia, Thermal Eng., 2021, vol. 68, pp. 117–135.  https://doi.org/10.1134/S0040601521020051

    Article  CAS  Google Scholar 

  6. El Sheikh, Kh., Ryabov, G.A., Hamid, M.D., Bukharina, T.V., and Hussain, M.A., The generation and suppression of NOx and N2O emissions in the oxy-fuel combustion process with recycled CO2 (an overview), Therm. Eng., 2020, vol. 67, no. 1, pp. 1–9.  https://doi.org/10.1134/S0040601519120048

    Article  CAS  Google Scholar 

  7. Maidanik, M.N., Verbovetskii, E.Kh., and Tugov, A.N., Preliminary assessment of the possibility to shift thermal power plant boilers for burning alternative coal, Thermal Eng., 2021, vol. 68, pp. 690–697.  https://doi.org/10.1134/S004060152108005X

    Article  Google Scholar 

  8. Kapustyanskii, A.A., Study of flame combustion of off-design binary coal blends in steam boilers, Therm. Eng., 2017, vol. 64, no. 7, pp. 534–541.  https://doi.org/10.1134/S0040601517070023

    Article  CAS  Google Scholar 

  9. Yang, Y., Lu, X., and Wang, Q., Investigation on the co-combustion of low calorific oil shale and its semi-coke by using thermogravimetric analysis, Energy Convers. Manage., 2017, vol. 136, pp. 99–107.  https://doi.org/10.1016/j.enconman.2017.01.006

    Article  CAS  Google Scholar 

  10. Zhang, J., Jia, X., Wang, C., Zhao, N., Wang, P., and Che, D., Experimental investigation on combustion and NO formation characteristics of semi-coke and bituminous coal blends, Fuel, 2019, vol. 247, pp. 87–96. https://doi.org/10.1016/j.fuel.2019.03.045

    Article  CAS  Google Scholar 

  11. Zheng, S., Hu, Y., Wang, Z., and Cheng, X., Experimental investigation on ignition and burnout characteristics of semi-coke and bituminous coal blends, J. Energy Inst., 2020, vol. 93, pp. 1373–1381.  https://doi.org/10.1016/j.joei.2019.12.007

    Article  CAS  Google Scholar 

  12. Yao, H., He, B., Ding, G., Tong, W., and Kuang, Yu., Thermogravimetric analyses of oxy-fuel co-combustion of semi-coke and bituminous coal, Appl. Therm. Eng., 2019, vol. 156, pp. 708–721.  https://doi.org/10.1016/j.applthermaleng.2019.04.115

    Article  CAS  Google Scholar 

  13. Hu, L., Zhang, Y., Chen, D., Fang, J., Zhang, M., Wu, Yu., Zhang, H., Li, Z., and Lyu, J., Experimental study on the combustion and NOx emission characteristics of a bituminous coal blended with semi-coke, Appl. Therm. Eng., 2019, vol. 160, p. 113993.  https://doi.org/10.1016/j.applthermaleng.2019.113993

    Article  CAS  Google Scholar 

  14. Glushkov, D.O., Matiushenko, A.I., Nurpeiis, A.E., and Zhuikov, A.V., An experimental investigation into the fuel oil-free start-up of a coal-fired boiler by the main solid fossil fuel with additives of brown coal, biomass and charcoal for ignition enhancement, Fuel Process. Technol., 2021, vol. 223, p. 106986.  https://doi.org/10.1016/j.fuproc.2021.106986

    Article  CAS  Google Scholar 

  15. Zhang, X., Zhu, S., Zhu, J., Lyu, Q., Wei, K., Huang, Q., Qi, G., and Xia, H., TG-MS study on co-combustion characteristics and coupling mechanism of coal gasification fly ash and coal gangue by ECSA®, Fuel, 2022, vol. 314, p. 123086.  https://doi.org/10.1016/j.fuel.2021.123086

    Article  CAS  Google Scholar 

  16. Yang, L., Wang, H., Zhu, J., Sun, W., Xu, Y., and Wu, Sh., Co-combustion and ash characteristics of Zhundong coal with rice husk hydrochar prepared by the hydrothermal carbonization technology for co-combustion, IET Renew. Power Gener., 2022, vol. 16, no. 2, pp. 329–338.  https://doi.org/10.1049/rpg2.12324

    Article  Google Scholar 

  17. Rago, Y.P., Collard, F.-X., Görgens, J.F., Surroop, D., and Mohee, R., Co-combustion of torrefied biomass-plastic waste blends with coal through TGA: Influence of synergistic behaviour, Energy, 2022, vol. 239, part A, p. 121859.  https://doi.org/10.1016/j.energy.2021.121859

  18. Wang, Y., Jia, L., Guo, J., Wang, B., Zhang, L., Xiang, J., and Jin, Y., Thermogravimetric analysis of co-combustion between municipal sewage sludge and coal slime: Combustion characteristics, interaction and kinetics, Thermochim. Acta, 2021, vol. 706, p. 179056. https://doi.org/10.1016/j.tca.2021.179056

    Article  CAS  Google Scholar 

  19. Fetisova, O.Yu., Kuznetsov, P.N., Purevsuren, B., and Avid, B., A kinetic study of the stepwise thermal decomposition of various coals from Mongolia, Solid Fuel Chem., 2021, vol. 55, pp. 1–7.  https://doi.org/10.3103/S0361521921010031

    Article  CAS  Google Scholar 

  20. Fetisova, O.Yu., Kuznetsov, P.N., and Chesnokov, N.V., Kinetic study of the thermal decomposition of low-ranked coal of Mongolia and Tuva, Khim. Intersakh Ustoich. Razvit., 2019, vol. 27, no. 6, pp. 677–684. https://doi.org/10.15372/KhUR2019190

    Article  CAS  Google Scholar 

  21. Vergunov, A.V., Mineralogy and geochemistry of tonsteins in coal of Chernogorskoe deposit of the Minusinsk Basin, Izv. Tomskogo Politekh. Univ., 2021, vol. 332, no. 6, pp. 118–129.  https://doi.org/10.18799/24131830/2021/06/3242

    Article  Google Scholar 

  22. Schmid, R. and Sapunov, V.N., Non-Formal Kinetics: In Search for Chemical Reaction Pathways, Weinheim, Verlag Chemie, 1982.

    Google Scholar 

Download references

Funding

The study was carried out with the financial support of the Krasnoyarsk Regional Science Foundation in the framework of the project “Concept for the development of thermal power engineering in the Krasnoyarsk Territory.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Zhuikov, O. Yu. Fetisova or D. A. Loginov.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuikov, A.V., Fetisova, O.Y. & Loginov, D.A. Analysis of Chernogorsk Coal before and after Oxidative Carbonization. Coke Chem. 65, 161–166 (2022). https://doi.org/10.3103/S1068364X22050064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X22050064

Navigation