Skip to main content
Log in

Investigation of D16ch Alloy Fracture Kinetics by Acoustic Emission, Digital Image Correlation, and Real Damage Analysis

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract—The mechanical and physical properties of a D16ch alloy, which is used as the fuselage skin of the IL-62M aircraft with a service life of more than 28 years, has been studied. The influence of the service life and preliminary cyclic loading on the acoustic emission (AE) characteristics, the strain characteristics during tension obtained by the digital image correlation (DIC) method, and the real damage determined using optical microscopy are estimated. The mechanical properties of the material during operation are found to remain almost unchanged as compared to the initial state. However, the AE study demonstrates a significant increase in the AE activity \({{\dot {N}}_{{{\text{AE}}}}}\) and the accumulated number of AE signals ΣNAE, and the DIC investigation reveals an increase in the plastic zone area in specimens after operation. Preliminary cyclic loading of specimens both in the initial state and after operation leads to an increase in the relative damaged surface area. The results obtained indicate that the research methods used in this work give important information to estimate the degradation of the material and the effect of preliminary cyclic loading on it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. E. Wildemann, O. A. Staroverov, and M. P. Tretyakov, “Deformation and failure of polymer composite materials under preliminary cyclic and low-velocity impacts,” IOP Conf. Ser.: Mater. Sci. Eng. 747, 012034 (2020).

  2. A. Sarkar, V. Vijayanand, P. Parameswaran, V. Shankar, R. Sandhya, K. Laha, T. Jayakumar, and K. E. Rajendra, “Influence of prior fatigue cycling on creep behavior of reduced activation ferritic–martensitic steel,” Met. Mater. Trans. A 45, 3023–3035 (2014).

    Article  CAS  Google Scholar 

  3. G. V. Shlyakhova, L. B. Zuev, and A. V. Bochkareva, “Structure of carbon steel under plastic deformation,” IOP Conf. Ser.: Mater. Sci. Eng. 447, 012064 (2018).

  4. E. N. Beletsky, V. P. Levin, I. O. Sinev, L. R. Botvina, M. R. Tyutin, and A. V. Kulemin, “Evolution of the physical properties and damage assessment of the D16ChATV alloy,” in Proceedings of AIP Conference (2020), p. 040006.

  5. E. N. Beletsky, I. O. Sinev, M. R. Tyutin, and A. I. Bolotnikov, “Influence of preliminary cyclic loading on the kinetics of D16ch alloy damage under static loading,” in Proceedings of LXIII International Conference on Physical Materials Science: Actual Problems of Strength Dedicated to the 70th Anniversary of Togliatti State University (Togliatti, 2021), pp. 142–143.

  6. H. K. Phon, E. O. Sysoev, E. A. Kuznetsov, and O. E. Sysoev, “Forecasting the long-term strength of the shaped parts of hydrogas systems using acoustic emission parameters,” Trans. MAI, No. 110, 4 (2020).

    Google Scholar 

  7. L. R. Botvina, M. R. Tyutin, A. I. Bolotnikov, and T. B. Petersen, “Effect of preliminary cycling on the acoustic emission characteristics of structural 15Kh2GMF steel,” Russ. Metall. (Metally), No. 1, 32–41 (2021).

  8. J. M. Vasco-Olmo, M. N. James, C. J. Christopher, E. A. Patterson, and F. A. Diaz, “Assessment of crack tip plastic zone size and shape and its influence on crack tip shielding,” Fatig. Fract. Eng. Mater. Struct. 39 (8), 969–981 (2016).

    Article  Google Scholar 

  9. W. Zhang and Y. Lio, “Plastic zone size estimation under cyclic loadings using in situ optical microscopy fatigue testing,” Fatig. Fract. Eng. Mater. Struct. 34 (9), 717–727 (2011).

    Article  Google Scholar 

  10. G. Luis, G. Gonzáles, J. Andrés, O. González, J. Tupiassú, P. De Castro, J. Luiz, and F. Freire, “Using DIC techniques to measure strain ranges inside the cyclic plastic zone ahead of a fatigue crack tip,” Fract. Struct. Integrity 13 (49), 74–81 (2019).

    Google Scholar 

  11. L. R. Botvina, T. B. Petersen, and M. R. Tyutin, “Estimation and analysis of the b-value of acoustic emission,” Zavod. Lab. 77 (3), 43–50 (2011).

    Google Scholar 

  12. J. Blaber, B. Adair, and A. Antoniou, “Ncorr: open-source 2D digital image correlation matlab software,” Exp. Mech. 55 (6), 1105–1122 (2015).

    Article  Google Scholar 

  13. L. R. Botvina, Fracture Kinetics of Structural Materials (Nauka, Moscow, 1989).

    Google Scholar 

  14. S. N. Zhurkov, V. S. Kuksenko, and A. I. Slutsker, “Formation of submicroscopic cracks in polymers under load,” Fiz. Tverd. Tela 11 (1), 296–302 (1969).

    CAS  Google Scholar 

  15. L. R. Botvina, Fracture: Kinetics, Mechanisms, and General Laws (Nauka, Moscow, 2008).

    Google Scholar 

  16. L. R. Botvina, A. P. Soldatenkov, M. R. Tyutin, Yu. A. Demina, V. P. Levin, and T. B. Petersen, “On interrelation of damage accumulation in structural steels and physical parameters estimated by methods of acoustic emission and metal magnetic memory,” Russ. Metall. (Metally), No. 1, 10–17 (2017).

  17. L. R. Botvina, A. I. Bolotnikov, and I. O. Sinev, “Hierarchy of microcracks under cyclic and static loading,” Fizich. Mezomekh. 22 (6), 24–36 (2019).

    Google Scholar 

  18. V. N. Basov, G. I. Nesterenko, B. G. Nesterenko, and V. G. Petrusenko, “Influence of long-term aircraft operation on the strength characteristics of materials,” Nauch. Vestn. MGTU GA, No. 141, 38–48 (2009).

    Google Scholar 

  19. B. G. Nesterenko and G. I. Nesterenko, “Resource of the structures of aging transport aircraft,” Nauch. Vestn. MGTU GA, No. 199, 11–22 (2014).

    Google Scholar 

  20. L. M. Rybakova, “Mechanical laws of metal fracture during volumetric and surface plastic deformation,” Probl. Mashinostr. Nadezhn. Mashin, No. 5, 113–123 (1998).

    Google Scholar 

  21. L. R. Botvina, T. B. Petersen, and M. R. Tyutin, “Acoustic calm as a diagnostic sign of prefracture,” Dokl. Akad. Nauk 479 (5), 514–518 (2018).

    Google Scholar 

  22. O. V. Bashkov, “Acoustic emission analysis of the evolution of the defective structure of polycrystalline materials at various stages of loading,” Doctoral Dissertation in Engineering (Komsomolsk-on-Amur, 2011).

  23. L. R. Botvina and M. R. Tyutin, “New acoustic parameter characterizing loading history effects,” Eng. Fract. Mechan. 210, 358–366 (2019).

    Article  Google Scholar 

  24. V. V. Panasyuk and B. L. Lozovii, “On the propagation of two cracks of different lengths,” Dokl. Akad. Nauk SSSR 11, 1444–1447 (1962).

    Google Scholar 

  25. L. R. Botvina and A. P. Soldatenkov, “On the concentration criterion of fracture,” Metallofiz. Nov. Tekhnol. 39 (4), 477–490 (2017).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-19-00674.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. R. Botvina, I. O. Sinev or M. R. Tyutin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botvina, L.R., Bolotnikov, A.I., Sinev, I.O. et al. Investigation of D16ch Alloy Fracture Kinetics by Acoustic Emission, Digital Image Correlation, and Real Damage Analysis. Russ. Metall. 2022, 719–726 (2022). https://doi.org/10.1134/S0036029522070023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522070023

Navigation