Skip to main content
Log in

Mass Transfer between Liquid and Solid Phases in the Synthesis of High-Crystallinity Granular ZSM-5 with Hierarchical Porous Structure

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The paper investigates the mass transfer between the liquid and solid phases during the crystallization of granules that contained 60 wt % of powdered ZSM-5 and 40 wt % of amorphous aluminosilicate in a sodium silicate solution. The chemical and phase compositions and the porous properties of the resultant zeolite-containing products were identified. Based on the findings obtained, a stepwise mechanism was suggested for the synthesis of high-crystallinity granular ZSM-5 zeolite with a hierarchical porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Moliner, M., Martínez, C., and Corma, A., Chem. Mater., 2014, vol. 26, no. 1, pp. 246–258. https://doi.org/10.1021/cm4015095

    Article  CAS  Google Scholar 

  2. Wang, Y., Yokoi, T., Namba, S., Kondo, J.N., and Tatsumi, T., J. Catal., 2016, vol. 333, pp. 17–28. https://doi.org/10.1016/j.jcat.2015.10.011

    Article  CAS  Google Scholar 

  3. Chen, F., Ma, L., Cheng, D., and Zhan, X., Catal. Commun., 2012, vol. 18, pp. 110–114. https://doi.org/10.1016/j.catcom.2011.11.033

    Article  CAS  Google Scholar 

  4. Kutepov, B.I., Travkina, O.S., Agliullin, M.R., Khazipova, A.N., Pavlova, I.N., Bubennov, S.V., Kostyleva, S.A., and Grigor’eva, N.G., Petrol. Chem., 2019, vol. 59, no. 3, pp. 297–309. https://doi.org/10.1134/S0965544119030095

    Article  CAS  Google Scholar 

  5. Patent RF 2739350, 2020.

  6. Szostak, R., Molecular Sieves, Principles of Synthesis and Identification, New York: Van Nostrand Reinhold, 1989.

  7. Grand, J., Awala, H., and Mintova, S., Cryst. Eng. Comm., 2016, no. 18, pp. 650–664. https://doi.org/10.1039/C5CE02286J

    Article  CAS  Google Scholar 

  8. Park, M.B., Ahn, N.H., Broach, R.W., Nicholas, C.P., Lewis, G.J., and Hong, S.B., Chem. Mater., 2015, vol. 27, no. 5, pp. 1574–1582. https://doi.org/10.1021/cm504079m

    Article  CAS  Google Scholar 

  9. Severance, M., Wang, B., Ramasubramanian, K., Zhao, L., Winston Ho, W.S., and Dutta, P.K., Langmuir, 2014, vol. 30, no. 23, pp. 6929–6937. https://doi.org/10.1021/la5004512

    Article  CAS  PubMed  Google Scholar 

  10. Hould, N.D., Foster, A., and Lobo, R.F., Micropor. Mesopor. Mater., 2011, vol. 142, no. 1, pp. 104-115 https://doi.org/10.1016/j.micromeso.2010.11.024

    Article  CAS  Google Scholar 

  11. Liu, C., Gu, W., Kong, D., and Guo, H., Micropor. Mesopor. Mater., 2014, vol. 183, pp. 30–36. https://doi.org/10.1016/j.micromeso.2013.08.037

    Article  CAS  Google Scholar 

  12. Zheng, B., Wan, Y., Yang, W., Ling, F., Xie, H., Fang, X., and Guo, H., Chinese J. Catal., 2014, vol. 35, no. 11, pp. 1800-1810 https://doi.org/10.1016/S1872-2067(14)60089-9

    Article  CAS  Google Scholar 

  13. Gross-Lorgouilloux, M., Caullet, P., Soulard, M., Patarin, J., Moleiro, E., and Saude, I., Micropor. Mesopor. Mater., 2010, vol. 131, no. 3, pp. 407–417. https://doi.org/10.1016/j.micromeso.2010.01.022

    Article  CAS  Google Scholar 

  14. Zhou, Z., Jin, G., Liu, H., Wu, J., and Mei, J., Appl. Clay Sci., 2014, vol. 97–98, pp. 110–114. https://doi.org/10.1016/j.clay.2014.05.015

    Article  CAS  Google Scholar 

  15. Su, S., Ma, H., and Chuan, X., Adv. Powder Technol., 2016, vol. 27, no. 1, pp. 139–144. https://doi.org/10.1016/j.apt.2015.11.011

    Article  CAS  Google Scholar 

  16. Travkina, O.S., Kutepov, B.I., and Pavlov, M.L., J. Mater. Phys. Chem., 2013, vol. 1, no. 1, pp. 1–3. http://pubs.sciepub.com/jmpc/1/1/1

    Google Scholar 

  17. Travkina, O.S., Pavlova, I.N., and Kutepov, B.I., Petrol. Chem., 2020, vol. 60, no. 4, pp. 437–443. https://doi.org/10.1134/S0965544120040179

    Article  CAS  Google Scholar 

  18. Sharlo, G., Metody analiticheskoi khimii (Methods of Analytical Chemistry), Moscow.: Khimiya, 1965, pp. 477–480.

  19. Gregg, S.J. and Sing, K.S., Adsorption, Surface Area, and Porosity, London: Academic Press, 1982, pр. 121–203.

Download references

Funding

The study was carried out within the state assignment for IPC UFRC RAS (project no. FMRS-2022-0080). The physicochemical properties of high-crystallinity granular ZSM-5 zeolites with a hierarchical porous structure were investigated within RFBR project no. 19-33-60009. The structural investigation was carried out at the Agidel Regional Center for Collective Use of UFRC RAS within the state assignment for IPC UFRC RAS (project no. FMRS-2022-0081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Travkina.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Travkina, O.S., Kuvatova, R.Z., Ishkildina, A.K. et al. Mass Transfer between Liquid and Solid Phases in the Synthesis of High-Crystallinity Granular ZSM-5 with Hierarchical Porous Structure. Pet. Chem. 62, 813–819 (2022). https://doi.org/10.1134/S0965544122070064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122070064

Keywords:

Navigation