Skip to main content
Log in

Effects of Synthesis Method on the Physicochemical and Catalytic Properties of BEA Zeolites

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

This study investigated the physicochemical properties of BEA zeolites with SiO2/Al2O3 ratios of 50 to 250 synthesized in fluoride and alkaline media and tested their catalytic activity in alkylation of benzene with propylene under liquid phase conditions. The samples similar in SiO2/Al2O3 ratio synthesized by the fluoride route exhibited a larger crystal size and fewer crystal defects. Regardless of the synthesis medium, the samples with SiO2/Al2O3 = 50 proved to be more active and stable in alkylation of benzene with propylene than the samples with lower aluminum content in the zeolite framework. The samples prepared by the fluoride route achieved higher cumene selectivity. This can be explained by their lower external surface area than that in the zeolites prepared in alkaline media, where side reactions produce large molecules of di- and triisopropylbenzenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Vermeiren, W. and Gilson J.-P., Top. Catal., 2009, vol. 52, pp. 1131–1161. https://doi.org/10.1007/s11244-009-9271-8

  2. Yilmaz, B. and Muller, U., Top. Catal., 2009, vol. 52, pp. 888–895. https://doi.org/10.1007/s11244-009-9226-0

    Article  CAS  Google Scholar 

  3. Shi, J., Wang, Y., Yang, W., Tang, Y., and Xie, Z., Chem. Soc. Rev., 2015, vol. 44, pp. 8877–8903. https://doi.org/10.1039/c5cs00626k

    Article  CAS  PubMed  Google Scholar 

  4. Camblor, M.A. and Perez-Pariente, J., Zeolites, 1991, vol. 11, pp. 202–210. https://doi.org/10.1016/S0144-2449(05)80220-9

    Article  CAS  Google Scholar 

  5. Camblor, M.A., Mifsud, A., and Perez-Pariente, J., Zeolites, 1991, vol. 11, pp. 792–797. https://doi.org/10.1016/S0144-2449(05)80057-0

    Article  CAS  Google Scholar 

  6. Camblor, M.A., Corma, A., and Valencia, S., Micropor. Mesopor. Mater., 1998, vol. 25, pp. 59–74. https://doi.org/10.1016/S1387-1811(98)00172-3

    Article  CAS  Google Scholar 

  7. Camblor, M.A., Villaescusa, L.A., and Díaz-Cabañas, M.J., Top. Catal., 1999, vol. 9, pp. 59–76.

    Article  CAS  Google Scholar 

  8. Caullet, P., Paillaud, J.-L., Simon-Masseron, A., Soulard, M., and Patarin, J., C. R. Chim., 2005, vol. 8, pp. 245–266. https://doi.org/10.1016/j.crci.2005.02.001

    Article  CAS  Google Scholar 

  9. Chézeau, J.-M., Delmotte, L., Guth, J.L., and Soulard, M., Zeolites., 1989, vol. 9, pp. 78–80. https://doi.org/10.1016/0144-2449(89)90013-4

    Article  Google Scholar 

  10. Camblor, M.A., Corma, A.; and Valencia, S., J. Mater. Chem., 1998, vol. 8, pp. 2137–2145.

    Article  CAS  Google Scholar 

  11. Moteki, T. and Lobo, R.F., Chem. Mater., 2015. https://doi.org/10.1021/acs.chemmater.5b04439

  12. Blasco, T., Camblor, M.A., Corma, A., Esteve, P., Guil, J.M., Martınez, A., Perdigon-Melon, J.A., and Valencia, S., J. Phys. Chem. B, 1998, vol. 102, pp. 75–88. https://doi.org/10.1021/jp973288w

    Article  CAS  Google Scholar 

  13. Bleken, F.L., Chavan, S., Olsbue, U., Boltz, M., Ocampo, F., and Louis, B., Appl. Catal. A: Gen., 2012, vols. 447–448, pp. 178–185. https://doi.org/10.1016/j.apcata.2012.09.025

    Article  CAS  Google Scholar 

  14. Qin, Z., Lakiss, L. Tosheva, L., Gilson, J.-P., Vicente, A., Fernandez, C., and Valtchev, V., Adv. Funct. Mater., 2014, vol. 24, pp. 257–264. https://doi.org/10.1002/adfm.201301541

    Article  CAS  Google Scholar 

  15. Degnan, T.F.Jr, Smith, C.M., and Venkat, Ch.R., Appl. Catal. A: Gen., 2001, vol. 221, no. 283, pp. 283–294. https://doi.org/10.1016/S0926-860X(01)00807-9

    Article  CAS  Google Scholar 

  16. Perego, C. and Ingallina, P., Catal. Today, 2002, vol. 73, pp. 3–22. https://doi.org/10.1016/S0920-5861(01)00511-9

    Article  CAS  Google Scholar 

  17. https://www.imarcgroup.com/cumene-market

  18. Junqueira, P.G., Mangili, P.V., Santos, R.O., Santos, L.S., and Prata, D.M., Chem. Eng. Proc., 2018, vol. 130, pp. 309–325. https://doi.org/10.1016/j.cep.2018.06.010

    Article  CAS  Google Scholar 

  19. Guo, Y., Du, X., Liu, L., Dong, Y., and Lei, Z., Mater. Today Commun., 2020, vol. 26, p. 101757. https://doi.org/10.1016/j.mtcomm.2020.101757

    Article  CAS  Google Scholar 

  20. Perez-Pariente, J., Sanz, J., Fornes, V., and Corma, A., J. Catal., 1990, vol. 124, pp. 217–223. https://doi.org/10.1016/0021-9517(90)90116-2

    Article  CAS  Google Scholar 

  21. Fyfe, C.A., Strobl, H., Kokotailo, G.T., Pasztor, C.T., Barlow, G.E., and Bradley, S., Zeolites, 1988, vol. 8, pp. 132–136. https://doi.org/10.1016/S0144-2449(88)80079-4

    Article  CAS  Google Scholar 

  22. Bok, T.O., Andriako, E.P., Knyazeva, E.E., and Ivanova, I.I., CrystEngComm., 2022, vol. 24, pp. 3199–3207. https://doi.org/10.1039/D1CE01618K

    Article  CAS  Google Scholar 

  23. Bellussi, G., Pazzuconi, G., Perego, C., Girotti, G., and Terzoni, G., J. Catal., 1995, vol. 157, pp. 227–234. https://doi.org/10.1006/jcat.1995.1283

    Article  CAS  Google Scholar 

  24. Thakur, R. and Barman, S., Kinet. Catal., 2016, vol. 57, pp. 592–601. https://doi.org/10.1134/S0023158416050189

    Article  CAS  Google Scholar 

  25. Mohhamadparast, F., Halladj, R., and Askari, S., Chem. Eng. Commun., 2015, vol. 202, pp. 542–556. https://doi.org/10.1080/00986445.2014.952815

    Article  CAS  Google Scholar 

  26. Ji, Y., Yang, H., and Yan, W., Catalysts, 2017, vol. 7, pp. 367. https://doi.org/10.3390/catal7120367

    Article  CAS  Google Scholar 

Download references

Funding

The synthesis and physicochemical characterization of the catalysts were performed with financial support from the Russian Science Foundation (Grant no. 21-43-04406). The NMR studies and analysis of catalytic performance of the samples were funded by the Russian Science Foundation (Grant no. 20-13-00203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Andriako.

Ethics declarations

I.I. Ivanova, a co-author, is the Chief Editor at the “Sovremennye molekulyarnye sita” (Advanced Molecular Sieves) Journal. The other co-authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomareva, O.A., Andriako, E.P., Vdovchenko, N.K. et al. Effects of Synthesis Method on the Physicochemical and Catalytic Properties of BEA Zeolites. Pet. Chem. 62, 906–913 (2022). https://doi.org/10.1134/S0965544122070106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122070106

Keywords:

Navigation