Skip to main content
Log in

Oligomerization of C5 Olefins on Amorphous Mesoporous Aluminosilicates

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Catalytic properties of ASM amorphous mesoporous aluminosilicates with different SiO2/Al2O3 molar ratios (20, 40, 80) in oligomerization of 1-pentene and isoamylene fraction were studied. The yield of pentene oligomers is maximal on ASM-20 aluminosilicate and decreases with an increase in the SiO2/Al2O3 molar ratio. The optimum conditions for preparing 1-pentene oligomers in the maximal yield (92–94%) were determined: 150–180°C, 10% catalyst. The yields of the oligomers obtained from the isoamylene fraction on ASM-20 and ASM-40 aluminosilicates are 76 and 74%, respectively (110°C, 10% catalyst), with dimers prevailing. Comparison of the catalytic properties of ASM-20 and 40 mesoporous aluminosilicates and H-Beta zeolite in oligomerization of these monomers shows that their activity is close, but the mesoporous materials exhibit higher stability in oligomerization. In addition, ASM aluminosilicates allow preparation of oligomers with broader molecular-mass distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Scheme 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Corma, A. and Iborra, S., Catalysts for Fine Chemical Synthesis, vol. 4: Microporous and Mesoporous Solid Catalysts, New Jersey: Wiley, 2006, pp. 131–132.

  2. Nicholas, C.P., Appl. Catal. A, 2017, vol. 543, pp. 82–97. https://doi.org/10.1016/j.apcata.2017.06.011

    Article  CAS  Google Scholar 

  3. de Klerk, A., Energy Fuels, 2006, vol. 20, pp. 1799–1805. https://doi.org/10.1021/ef060169j

    Article  CAS  Google Scholar 

  4. Chiche, B., Sauvage, E., Di Renzo, F., Ivanova, I.I., and Fajula, F., J. Mol. Catal. A: Chem., 1998, vol. 134, pp. 145–157. https://doi.org/10.1016/S1381-1169(98)00031-4

    Article  CAS  Google Scholar 

  5. Escola, J.M., Van Grieken, R., Moreno, J., and Rodríguez, R., Ind. Eng. Chem. Res., 2006, vol. 45, pp. 7409–7414. https://doi.org/10.1021/ie0603262

    Article  CAS  Google Scholar 

  6. Van Grieken, R., Escola, J.M., Moreno, J., and Rodriguez, R., Appl. Catal. A, 2006, vol. 305, pp. 176–188. https://doi.org/10.1016/j.apcata.2006.02.058

    Article  CAS  Google Scholar 

  7. Pater, J.P.G., Jacobs, P.A., and Martens, J.A., J. Catal., 1999, vol. 184, pp. 262–267. https://doi.org/10.1006/jcat.1999.2423

    Article  CAS  Google Scholar 

  8. Catani, R., Mandreoli, M., Rossini, S., and Vaccari, A., Catal. Today, 2002, vol. 75, pp. 125–131. https://doi.org/10.1016/S0920-5861(02)00053-6

    Article  CAS  Google Scholar 

  9. Flego, C., Peratello, S., Perego, C., Sabatino, L.M.F., Bellussi, G., and Romano, U., J. Mol. Catal. A: Chem., 2003, vols. 204–205, pp. 581–589. https://doi.org/10.1016/S1381-1169(03)00341-8

    Article  CAS  Google Scholar 

  10. Van Grieken, R., Escola, J.M., and Rodríguez, R., Stud. Surf. Sci. Catal., 2005, vol. 158, pp. 1733–1740. https://doi.org/10.1016/S0167-2991(05)80532-4

    Article  Google Scholar 

  11. de Klerk, A., Ind. Eng. Chem. Res., 2005, vol. 44, pp. 3887–3893. https://doi.org/10.1021/ie0487843

    Article  CAS  Google Scholar 

  12. Kulikov, A.B., Pugacheva, A.A., and Maksimov, A.L., Petrol. Chem., 2014, vol. 54, no. 6, pp. 426–430. https://doi.org/10.1134/S0965544114060085

    Article  CAS  Google Scholar 

  13. Van Grieken, R., Escola, J.M., Moreno, J., and Rodriguez, R., Chem. Eng. J., 2009, vol. 155, pp. 442–450. https://doi.org/10.1016/j.cej.2009.07.016

    Article  CAS  Google Scholar 

  14. Kwon, M.-H., Chae, H.-J., and Park, M.B., J. Ind. Eng. Chem., 2018, vol. 65, pp. 397–405. https://doi.org/10.1016/j.jiec.2018.05.012

    Article  CAS  Google Scholar 

  15. Silva, A.F., Fernandes, A., Antunes, M.M., Neves, P., Rocha, S.M., Ribeiro, M.F., Pillinger, M., Ribeiro, J., Silva, C.M., and Valente, A.A., Fuel, 2017, vol. 209, pp. 371–382. https://doi.org/10.1016/j.fuel.2017.08.017

    Article  CAS  Google Scholar 

  16. Popov, A.G., Fedosov, D.A., Ivanova, I.I., Vedernikov, O.S., Kleimenov, A.V., Kondrashev, D.O., Miroshkina, V.D., Abrashenkov, P.A., and Kuznetsov, S.E., Petrol. Chem., 2016, vol. 56, no. 3, pp. 237–243. https://doi.org/10.1134/S0965544116030117

    Article  CAS  Google Scholar 

  17. Vorobkalo, V.A., Popov, A.G., Rodionova, L.I., Knyazeva, E.E., and Ivanova, I.I., Petrol. Chem., 2018, vol. 58, no. 12, pp. 1036–1044. https://doi.org/10.1134/S0965544118120137

    Article  CAS  Google Scholar 

  18. Popov, A.G., Efimov, A.V., and Ivanova, I.I., Petrol. Chem., 2019, vol. 59, no. 7, pp. 691–694. https://doi.org/10.1134/S0965544119070168

    Article  CAS  Google Scholar 

  19. Grigorieva, N.G., Agliullin, M.R., Kutepov, B.I., Talzi, V.P., and Vodyankina, O.V., Russ. Chem. Bull., 2015, vol. 64, no. 4, pp. 852–858. https://doi.org/10.1007/s11172-015-0944-0

    Article  CAS  Google Scholar 

  20. Agliullin, M.R., Danilova, I.G., Faizullin, A.F., Amarantov, S.V., Bubennov, S.V., Prosochkina, T.R., Grigor’eva, N.G., Paukshtis, E.A., and Kutepov, B.I., Micropor. Mesopor. Mater., 2016, vol. 230, pp. 118–127. https://doi.org/10.1016/j.micromeso.2016.05.007

    Article  CAS  Google Scholar 

  21. Bubennov, S.V., Grigor’eva, N.G., Serebrennikov, D.V., Agliullin, M.R., and Kutepov, B.I., Petrol. Chem., 2019, vol. 59, no. 7, pp. 682–690. https://doi.org/10.1134/S096554411907003X

    Article  CAS  Google Scholar 

  22. Grigor’eva, N.G., Serebrennikov, D.V., Bubennov, S.V., and Kutepov, B.I., Catal. Ind., 2020, vol. 12, no. 1, pp. 47–55. https://doi.org/10.1134/S2070050420010079

    Article  Google Scholar 

  23. Grigor’eva, N.G., Serebrennikov, D.V., Bubennov, S.V., and Kutepov, B.I., Petrol. Chem., 2021, vol. 61, pp. 183–189. https://doi.org/10.1134/S096554412102002X

    Article  Google Scholar 

  24. Granollers, M., Izquierdo, J.F., Fité, C., and Cunill, F., Chem. Eng. J., 2013, vol. 234, pp. 266–275. https://doi.org/10.1016/j.cej.2013.08.083

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed within the framework of the government assignment for the Institute of Petroleum Chemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences (theme no. FMRS-2022-0080). Studies on synthesis of pentene oligomers were performed within the framework of a Bashkortostan Republic grant for young scientists in accordance with the Order of the Head of Bashkortostan Republic no. UG-377 of July 23, 2021. Structural studies were performed at the Agidel’ Regional Center for Shared Use, Ufa Federal Research Center, Russian Academy of Sciences within the framework of the government assignment for the Institute of Petroleum Chemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences (theme no. FMRS-2022-0081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Serebrennikov or N. G. Grigor’eva.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serebrennikov, D.V., Grigor’eva, N.G., Agliullin, M.R. et al. Oligomerization of C5 Olefins on Amorphous Mesoporous Aluminosilicates. Pet. Chem. 62, 896–905 (2022). https://doi.org/10.1134/S0965544122070118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122070118

Keywords:

Navigation