Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LYMPHOMA

Molecular determinants of outcomes in relapsed or refractory mantle cell lymphoma treated with ibrutinib or temsirolimus in the MCL3001 (RAY) trial

Abstract

Mantle cell lymphoma (MCL) is a rare, incurable lymphoma subtype characterized by heterogeneous outcomes. To better understand the clinical behavior and response to treatment, predictive biomarkers are needed. Using residual archived material from patients enrolled in the MCL3001 (RAY) study, we performed detailed analyses of gene expression and targeted genetic sequencing. This phase III clinical trial randomized patients with relapsed or refractory MCL to treatment with either ibrutinib or temsirolimus. We confirmed the prognostic capability of the gene expression proliferation assay MCL35 in this cohort treated with novel agents; it outperformed the simplified MCL International Prognostic Index in discriminating patients with different outcomes. Regardless of treatment arm, our data demonstrated that this assay captures the risk conferred by known biological factors, including increased MYC expression, blastoid morphology, aberrations of TP53, and truncated CCND1 3′ untranslated region. We showed the negative impact of BIRC3 mutations/deletions on outcomes in this cohort and identified that deletion of chromosome 8p23.3 also negatively impacts survival. Restricted to patients with deletions/alterations in TP53, ibrutinib appeared to abrogate the deleterious impact on outcome. These data illustrate the potential to perform a molecular analysis of predictive biomarkers on routine patient samples that can meaningfully inform clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MCL35 assay heat map for all patients (N = 134).
Fig. 2: Survival by MCL35 risk groups.
Fig. 3: IRC-assessed PFS across each MCL35 risk group stratified by treatment (temsirolimus vs. ibrutinib).
Fig. 4: Frequency of mutations observed in sequenced cohorta.
Fig. 5: Influence of mutations on survival.

Similar content being viewed by others

Data availability

The data sharing policy of the Janssen Pharmaceutical Companies of Johnson & Johnson is available at www.janssen.com/clinical-trials/transparency. Requests for access to data from select studies can be submitted through the Yale Open Data Access (YODA) Project site at yoda.yale.edu. Raw data files are available under controlled access in the European Genome-phenome Archive, under accession numbers EGAD00001008975.

References

  1. Epperla N, Hamadani M, Fenske TS, Costa LJ. Incidence and survival trends in mantle cell lymphoma. Br J Haematol. 2018;181:703–6.

    Article  PubMed  Google Scholar 

  2. Jain P, Wang M. Mantle cell lymphoma: 2019 update on the diagnosis, pathogenesis, prognostication, and management. Am J Hematol. 2019;94:710–25.

    Article  PubMed  Google Scholar 

  3. Fu S, Wang M, Lairson DR, Li R, Zhao B, Du XL. Trends and variations in mantle cell lymphoma incidence from 1995 to 2013: a comparative study between Texas and National SEER areas. Oncotarget. 2017;8:112516–29.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Abrisqueta P, Scott DW, Slack GW, Steidl C, Mottok A, Gascoyne RD, et al. Observation as the initial management strategy in patients with mantle cell lymphoma. Ann Oncol. 2017;28:2489–95.

    Article  CAS  PubMed  Google Scholar 

  5. Cohen JB, Han X, Jemal A, Ward EM, Flowers CR. Deferred therapy is associated with improved overall survival in patients with newly diagnosed mantle cell lymphoma. Cancer. 2016;122:2356–63.

    Article  CAS  PubMed  Google Scholar 

  6. Jain P, Zhang S, Kanagal-Shamanna R, Ok CY, Nomie K, Gonzalez GN, et al. Genomic profiles and clinical outcomes of de novo blastoid/pleomorphic MCL are distinct from those of transformed MCL. Blood Adv. 2020;4:1038–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liebers N, Dreger P, Dreyling M, Dietrich S. Risk stratification of mantle cell lymphoma (MCL). Ann Lymphoma. 2018;2:10.

    Article  Google Scholar 

  8. Sander B, Quintanilla-Martinez L, Ott G, Xerri L, Kuzu I, Chan JK, et al. Mantle cell lymphoma-a spectrum from indolent to aggressive disease. Virchows Arch. 2016;468:245–57.

    Article  CAS  PubMed  Google Scholar 

  9. Royo C, Navarro A, Clot G, Salaverria I, Giné E, Jares P, et al. Non-nodal type of mantle cell lymphoma is a specific biological and clinical subgroup of the disease. Leukemia. 2012;26:1895–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dreyling M, Campo E, Hermine O, Jerkeman M, Le Gouill S, Rule S, et al. Newly diagnosed and relapsed mantle cell lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28:iv62–71.

    Article  CAS  PubMed  Google Scholar 

  12. Martin P, Ruan J, Leonard JP. The potential for chemotherapy-free strategies in mantle cell lymphoma. Blood. 2017;130:1881–8.

    Article  CAS  PubMed  Google Scholar 

  13. Jain P, Lee HJ, Steiner RE, Hagemeister FB, Samaniego F, Westin JR, et al. Frontline treatment with ibrutinib with rituximab (IR) combination is highly effective in elderly (≥65 years) patients with mantle cell lymphoma (MCL)—results from a phase II trial. Blood. 2019;134:3988.

    Article  Google Scholar 

  14. Villa D, Sehn LH, Savage KJ, Toze CL, Song K, Den Brok WD, et al. Bendamustine and rituximab as induction therapy in both transplant-eligible and -ineligible patients with mantle cell lymphoma. Blood Adv. 2020;4:3486–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology B-cell lymphomas/mantle cell lymphoma. Version 5.2021. 2021.

  16. Hoster E, Dreyling M, Klapper W, Gisselbrecht C, Van Hoof A, Kluin-Nelemans HC, et al. A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood. 2008;111:558–65.

    Article  CAS  PubMed  Google Scholar 

  17. Hoster E, Klapper W, Hermine O, Kluin-Nelemans HC, Walewski J, Van Hoof A, et al. Confirmation of the mantle-cell lymphoma International Prognostic Index in randomized trials of the European Mantle-Cell Lymphoma Network. J Clin Oncol. 2014;32:1338–46.

    Article  PubMed  Google Scholar 

  18. Hoster E, Rosenwald A, Berger F, Bernd H-W, Hartmann S, Loddenkemper C, et al. Prognostic value of Ki-67 index, cytology, and growth pattern in mantle-cell lymphoma: results from randomized trials of the European Mantle Cell Lymphoma Network. J Clin Oncol. 2016;34:1386–94.

    Article  CAS  PubMed  Google Scholar 

  19. de Jong D, Rosenwald A, Chhanabhai M, Gaulard P, Klapper W, Lee A, et al. Immunohistochemical prognostic markers in diffuse large B-cell lymphoma: validation of tissue microarray as a prerequisite for broad clinical applications—a study from the Lunenburg Lymphoma Biomarker Consortium. J Clin Oncol. 2007;25:805–12.

    Article  PubMed  Google Scholar 

  20. Bea S, Valdes-Mas R, Navarro A, Salaverria I, Martin-Garcia D, Jares P, et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci USA. 2013;110:18250–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferrero S, Rossi D, Rinaldi A, Bruscaggin A, Spina V, Eskelund CW, et al. KMT2D mutations and TP53 disruptions are poor prognostic biomarkers in mantle cell lymphoma receiving high-dose therapy: a FIL study. Haematologica. 2020;105:1604–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Greiner TC, Dasgupta C, Ho VV, Weisenburger DD, Smith LM, Lynch JC, et al. Mutation and genomic deletion status ofataxia telangiectasia mutated (ATM) and p53 confer specific gene expression profiles in mantle cell lymphoma. Proc Natl Acad Sci USA. 2006;103:2352–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pararajalingam P, Coyle KM, Arthur SE, Thomas N, Alcaide M, Meissner B, et al. Coding and noncoding drivers of mantle cell lymphoma identified through exome and genome sequencing. Blood. 2020;136:572–84.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang J, Jima D, Moffitt AB, Liu Q, Czader M, Hsi ED, et al. The genomic landscape of mantle cell lymphoma is related to the epigenetically determined chromatin state of normal B cells. Blood. 2014;123:2988–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scott DW, Wright GW, Williams PM, Lih CJ, Walsh W, Jaffe ES, et al. Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood. 2014;123:1214–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scott DW, Abrisqueta P, Wright GW, Slack GW, Mottok A, Villa D, et al. New molecular assay for the proliferation signature in mantle cell lymphoma applicable to formalin-fixed paraffin-embedded biopsies. J Clin Oncol. 2017;35:1668–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Holte H, Beiske K, Boyle M, Troen G, Blaker YN, Myklebust J, et al. The MCL35 gene expression proliferation assay predicts high-risk MCL patients in a Norwegian cohort of younger patients given intensive first line therapy. Br J Haematol. 2018;183:225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rauert-Wunderlich H, Mottok A, Scott DW, Rimsza LM, Ott G, Klapper W, et al. Validation of the MCL35 gene expression proliferation assay in randomized trials of the European Mantle Cell Lymphoma Network. Br J Haematol. 2019;184:616–24.

    Article  CAS  PubMed  Google Scholar 

  29. Dreyling M, Jurczak W, Jerkeman M, Silva RS, Rusconi C, Trneny M, et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lymphoma: an international, randomised, open-label, phase 3 study. Lancet. 2016;387:770–8.

    Article  CAS  PubMed  Google Scholar 

  30. Rule S, Jurczak W, Jerkeman M, Rusconi C, Trneny M, Offner F, et al. Ibrutinib versus temsirolimus: 3-year follow-up of patients with previously treated mantle cell lymphoma from the phase 3, international, randomized, open-label RAY study. Leukemia. 2018;32:1799–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oberley MJ, Rajguru SA, Zhang C, Kim K, Shaw GR, Grindle KM, et al. Immunohistochemical evaluation of MYC expression in mantle cell lymphoma. Histopathology. 2013;63:499–508.

    PubMed  PubMed Central  Google Scholar 

  32. Hernández L, Hernández S, Beà S, Pinyol M, Ferrer A, Bosch F, et al. c-myc mRNA expression and genomic alterations in mantle cell lymphomas and other nodal non-Hodgkin’s lymphomas. Leukemia. 1999;13:2087–93.

    Article  PubMed  Google Scholar 

  33. Nordström L, Sernbo S, Eden P, Grønbaek K, Kolstad A, Räty R, et al. SOX11 and TP53 add prognostic information to MIPI in a homogenously treated cohort of mantle cell lymphoma—a Nordic Lymphoma Group study. Br J Haematol. 2014;166:98–108.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell. 2003;3:185–97.

    Article  CAS  PubMed  Google Scholar 

  35. Wiestner A, Tehrani M, Chiorazzi M, Wright G, Gibellini F, Nakayama K, et al. Point mutations and genomic deletions in CCND1 create stable truncated cyclin D1 mRNAs that are associated with increased proliferation rate and shorter survival. Blood. 2007;109:4599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen RW, Bemis LT, Amato CM, Myint H, Tran H, Birks DK, et al. Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. Blood. 2008;112:822–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Kallberg M, et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods. 2018;15:591–4.

    Article  CAS  PubMed  Google Scholar 

  38. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The ensembl variant effect predictor. Genome Biol. 2016;17:122.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Collins RL, Brand H, Karczewski KJ, Zhao X, Alföldi J, Francioli LC, et al. A structural variation reference for medical and population genetics. Nature. 2020;581:444–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol. 2016;12:e1004873.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Olshen AB, Bengtsson H, Neuvial P, Spellman PT, Olshen RA, Seshan VE. Parent-specific copy number in paired tumor-normal studies using circular binary segmentation. Bioinformatics. 2011;27:2038–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Venkatraman ES, Olshen AB. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics. 2007;23:657–63.

    Article  CAS  PubMed  Google Scholar 

  44. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457–81.

    Article  Google Scholar 

  45. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and pwerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.

    Google Scholar 

  46. Lee J, Zhang LL, Wu W, Guo H, Li Y, Sukhanova M, et al. Activation of MYC, a bona fide client of HSP90, contributes to intrinsic ibrutinib resistance in mantle cell lymphoma. Blood Adv. 2018;2:2039–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eskelund CW, Dahl C, Hansen JW, Westman M, Kolstad A, Pedersen LB, et al. TP53 mutations identify younger mantle cell lymphoma patients who do not benefit from intensive chemoimmunotherapy. Blood. 2017;130:1903–10.

    Article  CAS  PubMed  Google Scholar 

  48. Aukema SM, Hoster E, Rosenwald A, Canoni D, Delfau-Larue M-H, Rymkiewicz G, et al. Expression of TP53 is associated with the outcome of MCL independent of MIPI and Ki-67 in trials of the European MCL Network. Blood. 2018;131:417–20.

    Article  CAS  PubMed  Google Scholar 

  49. Ramsower CA, Maguire A, Robetorye RS, Feldman AL, Syrbu SI, Rosenthal AC, et al. Clinical laboratory validation of the MCL35 assay for molecular risk stratification of mantle cell lymphoma. J Hematop. 2020;13:231–8.

    Article  PubMed  Google Scholar 

  50. Ahmed M, Zhang L, Nomie K, Lam L, Wang M. Gene mutations and actionable genetic lesions in mantle cell lymphoma. Oncotarget. 2016;7:58638–48.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hill HA, Qi X, Jain P, Nomie K, Wang Y, Zhou S, et al. Genetic mutations and features of mantle cell lymphoma: a systematic review and meta-analysis. Blood Adv. 2020;4:2927–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu C, de Miranda NF, Chen L, Wasik AM, Mansouri L, Jurczak W, et al. Genetic heterogeneity in primary and relapsed mantle cell lymphomas: impact of recurrent CARD11 mutations. Oncotarget. 2016;7:38180–90.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rule S, Dreyling MH, Goy A, Hess G, Auer R, Kahl BS, et al. Long-term outcomes with ibrutinib versus the prior regimen: a pooled analysis in relapsed/refractory (R/R) mantle cell lymphoma (MCL) with up to 7.5 years of extended follow-up. Blood. 2019;134:1538.

    Article  Google Scholar 

  54. Sivina M, Jain N, Kim E, Kadia TM, Estrov ZE, Ohanian M, et al. Ibrutinib induces durable remissions in treatment-naïve CLL patients with 17p deletion/TP53 mutations: five year follow-up from a phase 2 study. Blood. 2020;136:22–3.

    Article  Google Scholar 

  55. Tam CS, Anderson MA, Pott C, Agarwal R, Handunnetti S, Hicks RJ, et al. Ibrutinib plus venetoclax for the treatment of mantle-cell lymphoma. N Engl J Med. 2018;378:1211–23.

    Article  CAS  PubMed  Google Scholar 

  56. Rahal R, Frick M, Romero R, Korn JM, Kridel R, Chun Chan F, et al. Pharmacological and genomic profiling identifies NF-κB–targeted treatment strategies for mantle cell lymphoma. Nat Med. 2014;20:87–92.

    Article  CAS  PubMed  Google Scholar 

  57. Diop F, Moia R, Favini C, Spaccarotella E, De Paoli L, Bruscaggin A, et al. Biological and clinical implications of BIRC3 mutations in chronic lymphocytic leukemia. Haematologica. 2019;105:448–56.

    Article  Google Scholar 

  58. Rubio-Moscardo F, Climent J, Siebert R, Piris MA, Martín-Subero JI, Nieländer I, et al. Mantle-cell lymphoma genotypes identified with CGH to BAC microarrays define a leukemic subgroup of disease and predict patient outcome. Blood. 2005;105:4445–54.

    Article  CAS  PubMed  Google Scholar 

  59. Baumann U, Fernández-Sáiz V, Rudelius M, Lemeer S, Rad R, Knorn A-M, et al. Disruption of the PRKCD–FBXO25–HAX-1 axis attenuates the apoptotic response and drives lymphomagenesis. Nat Med. 2014;20:1401–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by Janssen Research & Development, LLC. The authors would like to thank Dr Simon Rule’s contributions to the study and all the patients who were included in this analysis. Writing assistance was provided by Min Yu, MD, and Ian Phillips, PhD, of Parexel, and was funded by Janssen Research & Development, LLC.

Funding

This trial was sponsored by Janssen Research & Development, LLC.

Author information

Authors and Affiliations

Authors

Contributions

CLF, PP, LJ, SB, AJ, WX, MG, MZ, MB, BH, MS, CE, SD, SS, JV, RDM, DWS, and GL conceived and/or designed the work that led to the submission, performed experiments, acquired data, technical support, and/or played an important role in interpreting the results; drafted or revised the manuscript; approved the final version; and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Ciara L. Freeman.

Ethics declarations

Competing interests

CLF received honoraria from Seattle Genetics, Incyte, Janssen, Amgen, Celgene, AbbVie, and Sanofi and research funding from Janssen, Roche, and Teva. SB, BH, MS, CE, SD, SS, and JV are employees of Janssen Research & Development; SB, MS, CE, SD, SS, and JV also have equity ownership with the company. DWS has patents, one of which is licensed to NanoString Technologies, has served as a consultant for AstraZeneca, AbbVie, and Celgene, and received research funding from NanoString Technologies, Janssen, Celgene, and Roche. GL received research funding from Agios, Aquinox, Janssen, MorphoSys, Celgene, Roche, AstraZeneca, Gilead, Bayer, Novartis, and Verastem, and honoraria from Janssen, Celgene, Roche, AstraZeneca, Gilead, Bayer, Novartis, Bristol Myers Squibb, and Hexal, and has served on advisory boards for Janssen, Celgene, Roche, AstraZeneca, Gilead, Bayer, Novartis, Bristol Myers Squibb, Hexal, AbbVie, Genmab, MorphoSys, NanoString, and Takeda. PP, LJ, AJ, WX, MG, MZ, MB, and RDM have no conflicts of interest to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freeman, C.L., Pararajalingam, P., Jin, L. et al. Molecular determinants of outcomes in relapsed or refractory mantle cell lymphoma treated with ibrutinib or temsirolimus in the MCL3001 (RAY) trial. Leukemia 36, 2479–2487 (2022). https://doi.org/10.1038/s41375-022-01658-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01658-2

Search

Quick links