Skip to main content

Advertisement

Log in

The association between depression and bone metabolism: a US nationally representative cross-sectional study

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

This population-based study investigated the association between depression and bone mineral density (BMD), fractures, and osteoporosis in the US population. We found that participants with depression had lower BMD and were more likely to have fractures and osteoporosis.

Background

Depression, fractures, and osteoporosis are common in middle-aged and elderly, but their associations remained unclear.

Objective

To investigate the association between depression and bone mineral density (BMD), osteoporosis, and fracture in a middle-aged and elderly US population.

Methods

A nationally representative cross-sectional study used the National Health and Nutrition Examination Survey (NHANES) datasets. Depression was assessed and stratified using the Patient Health Questionnaire (PHQ-9). The multiple logistic regression models and the logistic binary regression models were used to analyze the association between depression and BMD, fractures, and osteoporosis. Gender, age, race, educational level, poverty ratio, body mass index (BMI), smoke, alcohol use, physical activity, and diabetes were included as covariates. Subgroup analysis was also conducted on gender, age, race, and education level.

Results

In total, 9766 participants were included after a series of exclusions, and 4179 (42.79%) had at least mild depressive symptoms. Compared to the participants without depression, those with depression had a lower total femur, femoral neck, and total spine BMD after adjusting multiple covariates. The multivariable-adjusted logistic binary regression models demonstrated that participants with depression more likely have hip fractures (OR = 1.518, 95% CI: 1.377–2.703, P = 0.000), spine fractures (OR = 1.311, 95% CI: 1.022–1.678, P = 0.030), and osteoporosis (OR = 1.621, 95% CI: 1.388–1.890, P = 0.000). Subgroup analysis revealed that depressed participants who were males, non-Hispanic White, ≤ 70 years, and not highly educated had a lower BMD and easily had osteoporosis.

Conclusion

Depression was associated with lower BMD, particularly in the spine, males, Hispanic-White, and not highly educated populations. Moreover, people with depression were more likely to have fractures and osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets are available on https://www.cdc.gov/nchs/nhanes/index.htm, and further inquiries can be directed to the corresponding authors.

References

  1. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S et al (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29:2520–2526. https://doi.org/10.1002/jbmr.2269

    Article  PubMed  Google Scholar 

  2. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Br Med J 312:1254–1259. https://doi.org/10.1136/bmj.312.7041.1254

    Article  CAS  Google Scholar 

  3. Cummings SR, Kelsey JL, Nevitt MC, Odowd KJ (1985) Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev 7:178–208. https://doi.org/10.1093/oxfordjournals.epirev.a036281

    Article  CAS  PubMed  Google Scholar 

  4. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936. https://doi.org/10.1016/s0140-6736(02)08761-5

    Article  PubMed  Google Scholar 

  5. Reginster JY, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38:4–9. https://doi.org/10.1016/j.bone.2005.11.024

    Article  Google Scholar 

  6. Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J et al (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. Arch Osteoporos 8:115. https://doi.org/10.1007/s11657-013-0136-1

    Article  Google Scholar 

  7. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287. https://doi.org/10.1016/s0140-6736(10)62349-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cizza G, Ravn P, Chrousos GP, Gold PW (2001) Depression: a major, unrecognized risk factor for osteoporosis? Trends Endocrinol Metab 12:198–203. https://doi.org/10.1016/s1043-2760(01)00407-6

    Article  CAS  PubMed  Google Scholar 

  9. Cizza G, Primma S, Csako G (2009) Depression as a risk factor for osteoporosis. Trends Endocrinol Metab 20:367–373. https://doi.org/10.1016/j.tem.2009.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kok RM, Reynolds CF 3rd (2017) Management of depression in older adults: a review. Jama 317:2114–2122. https://doi.org/10.1001/jama.2017.5706

    Article  CAS  PubMed  Google Scholar 

  11. Whooley MA, Kip KE, Cauley JA, Ensrud KE, Nevitt MC, Browner WS (1999) Depression, falls, and risk of fracture in older women. Study of Osteoporotic Fractures Research Group. Arch Intern Med 159:484–490. https://doi.org/10.1001/archinte.159.5.484

    Article  CAS  PubMed  Google Scholar 

  12. Forsén L, Meyer HE, Søgaard AJ, Naess S, Schei B, Edna TH (1999) Mental distress and risk of hip fracture. Do broken hearts lead to broken bones? J Epidemiol Community Health 53:343–347. https://doi.org/10.1136/jech.53.6.343

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cheng BH, Chen PC, Yang YH, Lee CP, Huang KE, Chen VC (2016) Effects of depression and antidepressant medications on hip fracture: a population-based cohort study in Taiwan. Medicine (Baltimore) 95:e4655. https://doi.org/10.1097/md.0000000000004655

    Article  CAS  PubMed  Google Scholar 

  14. Wu Q, Liu B, Tonmoy S (2018) Depression and risk of fracture and bone loss: an updated meta-analysis of prospective studies. Osteoporos Int 29:1303–1312. https://doi.org/10.1007/s00198-018-4420-1

    Article  CAS  PubMed  Google Scholar 

  15. Ozsoy S, Esel E, Turan MT, Kula M, Demir H, Kartalci S et al (2005) Is there any alteration in bone mineral density in patients with depression? Turk Psikiyatri Dergisi 16:77–82

    PubMed  Google Scholar 

  16. Oh SM, Kim HC, Ahn SV, Rhee Y, Suh I (2012) Association between depression and bone mineral density in community-dwelling older men and women in Korea. Maturitas 71:142–146. https://doi.org/10.1016/j.maturitas.2011.11.007

    Article  PubMed  Google Scholar 

  17. Charles LE, Fekedulegn D, Miller DB, Wactawski-Wende J, Violanti JM, Andrew ME et al (2012) Depressive symptoms and bone mineral density among police officers in a northeastern US City. Global J Health Sci 4:39–50. https://doi.org/10.5539/gjhs.v4n3p39

    Article  Google Scholar 

  18. He B, Lyu Q, Yin L, Zhang M, Quan Z, Ou Y (2021) Depression and osteoporosis: a Mendelian randomization study. Calcif Tissue Int 109:675–684. https://doi.org/10.1007/s00223-021-00886-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robbins J, Hirsch C, Whitmer R, Cauley J, Harris T, Cardiovascular Hlth S (2001) The association of bone mineral density and depression in an older population. J Am Geriatr Soc 49:732–736. https://doi.org/10.1046/j.1532-5415.2001.49149.x

    Article  CAS  PubMed  Google Scholar 

  20. Tolea MI, Black SA, Carter-Pokras OD, Kling MA (2007) Depressive symptoms as a risk factor for osteoporosis and fractures in older Mexican American women. Osteoporos Int 18:315–322. https://doi.org/10.1007/s00198-006-0242-7

    Article  CAS  PubMed  Google Scholar 

  21. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S et al (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29:2520–2526. https://doi.org/10.1002/jbmr.2269

    Article  PubMed  Google Scholar 

  22. Kesmodel US (2018) Cross-sectional studies - what are they good for? Acta Obstet Gynecol Scand 97:388–393. https://doi.org/10.1111/aogs.13331

    Article  PubMed  Google Scholar 

  23. CDC. NHANES 2017-2018 Brochures and Consent Documents. 2021; Available from: https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/documents.aspx?Cycle=2017-2018

  24. Kroenke K, Spitzer RL, Williams JB (2001) The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 16:606–613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kroenke K, Spitzer RL (2002) The PHQ-9: a new depression diagnostic and severity measure. Psychiatr Ann 32:509–515. https://doi.org/10.3928/0048-5713-20020901-06

    Article  Google Scholar 

  26. Spitzer RL, Kroenke K, Williams JB (1999) Validation and utility of a self-report version of PRIME-MD: the PHQ primary care study. Primary Care Evaluation of Mental Disorders. Patient Health Questionnaire. Jama 282:1737–1744. https://doi.org/10.1001/jama.282.18.1737

    Article  CAS  PubMed  Google Scholar 

  27. Zimmerman M (2019) Using the 9-item patient health questionnaire to screen for and monitor depression. JAMA 322:2125–2126. https://doi.org/10.1001/jama.2019.15883

    Article  PubMed  Google Scholar 

  28. Heymsfield SB, Wang J, Heshka S, Kehayias JJ, Pierson RN (1989) Dual-photon absorptiometry: comparison of bone mineral and soft tissue mass measurements in vivo with established methods. Am J Clin Nutr 49:1283–1289. https://doi.org/10.1093/ajcn/49.6.1283

    Article  CAS  PubMed  Google Scholar 

  29. Sommerhage V, Kull I, Schweiger U, Rudolf S (2013) Bone mineral density in a cohort of Estonian women with major depression. Arch Osteoporos 8:4. https://doi.org/10.1007/s11657-013-0163-y

    Article  Google Scholar 

  30. Schweiger U, Weber B, Deuschle M, Heuser I (2000) Lumbar bone mineral density in patients with major depression: evidence of increased bone loss at follow-up. Am J Psychiatr 157:118–120. https://doi.org/10.1176/ajp.157.1.118

    Article  CAS  PubMed  Google Scholar 

  31. Laudisio A, Marzetti E, Cocchi A, Bernabei R, Zuccala G (2008) Association of depressive symptoms with bone mineral density in older men: a population-based study. Int J Geriatr Psychiatry 23:1119–1126. https://doi.org/10.1002/gps.2037

    Article  PubMed  Google Scholar 

  32. Wong SYS, Lau EMC, Lynn H, Leung PC, Woo J, Cummings SR et al (2005) depression and bone mineral density: is there a relationship in elderly Asian men? Results from Mr. Os (Hong Kong). Osteoporos Int 16:610–615. https://doi.org/10.1007/s00198-004-1730-2

    Article  PubMed  Google Scholar 

  33. Yazici AE, Bagis S, Tot E, Sahin G, Yazici K, Erdogan C (2005) Bone mineral density in premenopausal women with major depression. Joint Bone Spine 72:540–543. https://doi.org/10.1016/j.jbspin.2004.12.011

    Article  PubMed  Google Scholar 

  34. Mezuk B, Eaton WW, Golden SH, Wand G, Lee HB (2008) Depression, antidepressants, and bone mineral density in a population-based cohort. J Gerontol Series a-Biol Sci Med Sci 63:1410–1415. https://doi.org/10.1093/gerona/63.12.1410

    Article  Google Scholar 

  35. Whooley MA, Cauley JA, Zmuda JM, Haney EM, Glynn NW (2004) Depressive symptoms and bone mineral density in older men. J Geriatr Psychiatry Neurol 17:88–92. https://doi.org/10.1177/0891988704264537

    Article  PubMed  Google Scholar 

  36. Halbreich U, Palter S (1996) Accelerated osteoporosis in psychiatric patients: possible pathophysiological processes. Schizophr Bull 22:447–454. https://doi.org/10.1093/schbul/22.3.447

    Article  CAS  PubMed  Google Scholar 

  37. Sewell MDE, Jiménez-Sánchez L, Shen X, Edmondson-Stait AJ, Green C, Adams MJ et al (2021) Associations between major psychiatric disorder polygenic risk scores and blood-based markers in UK biobank. Brain Behav Immun 97:32–41. https://doi.org/10.1016/j.bbi.2021.06.002

    Article  CAS  PubMed  Google Scholar 

  38. Skowrońska-Jóźwiak E, Gałecki P, Głowacka E, Wojtyła C, Biliński P, Lewiński A (2020) Bone metabolism in patients treated for depression. Int J Environ Res Public Health 17. https://doi.org/10.3390/ijerph17134756

  39. Alesci S, Martinez PE, Kelkar S, Ilias I, Ronsaville DS, Listwak SJ et al (2005) Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J Clin Endocrinol Metab 90:2522–2530. https://doi.org/10.1210/jc.2004-1667

    Article  CAS  PubMed  Google Scholar 

  40. Kahl KG, Rudolf S, Dibbelt L, Stoeckelhuber BM, Gehl HB, Hohagen F et al (2005) Decreased osteoprotegerin and increased bone turnover in young female patients with major depressive disorder and a lifetime history of anorexia nervosa. Osteoporos Int 16:424–429. https://doi.org/10.1007/s00198-004-1711-5

    Article  CAS  PubMed  Google Scholar 

  41. Zavos HMS, Zunszain PA, Jayaweera K, Powell TR, Chatzivasileiadou M, Harber-Aschan L et al (2021) Relationship between CRP and depression: a genetically sensitive study in Sri Lanka. J Affect Disord 297:112–117. https://doi.org/10.1016/j.jad.2021.10.003

    Article  CAS  PubMed  Google Scholar 

  42. Gold PW (2021) The PPARg system in major depression: pathophysiologic and therapeutic implications. Int J Mol Sci 22. https://doi.org/10.3390/ijms22179248

  43. Gold PW (2015) The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry 20:32–47. https://doi.org/10.1038/mp.2014.163

    Article  CAS  PubMed  Google Scholar 

  44. Battaglino R, Vokes M, Schulze-Späte U, Sharma A, Graves D, Kohler T et al (2007) Fluoxetine treatment increases trabecular bone formation in mice. J Cell Biochem 100:1387–1394. https://doi.org/10.1002/jcb.21131

    Article  CAS  PubMed  Google Scholar 

  45. Manelli F, Giustina A (2000) Glucocorticoid-induced osteoporosis. Trends Endocrinol Metab 11:79–85. https://doi.org/10.1016/s1043-2760(00)00234-4

    Article  CAS  PubMed  Google Scholar 

  46. Aspera-Werz RH, Ehnert S, Heid D, Zhu S, Chen T, Braun B et al (2018) Nicotine and cotinine inhibit catalase and glutathione reductase activity contributing to the impaired osteogenesis of SCP-1 cells exposed to cigarette smoke. Oxidative Med Cell Longev 2018:3172480. https://doi.org/10.1155/2018/3172480

    Article  CAS  Google Scholar 

  47. Satarug S, Moore MR (2004) Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect 112:1099–1103. https://doi.org/10.1289/ehp.6751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee LL, Lee JS, Waldman SD, Casper RF, Grynpas MD (2002) Polycyclic aromatic hydrocarbons present in cigarette smoke cause bone loss in an ovariectomized rat model. Bone 30:917–923. https://doi.org/10.1016/s8756-3282(02)00726-3

    Article  CAS  PubMed  Google Scholar 

  49. Lu Y, Di YP, Chang M, Huang X, Chen Q, Hong N et al (2021) Cigarette smoke-associated inflammation impairs bone remodeling through NFκB activation. J Transl Med 19:163. https://doi.org/10.1186/s12967-021-02836-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rudäng R, Darelid A, Nilsson M, Nilsson S, Mellström D, Ohlsson C et al (2012) Smoking is associated with impaired bone mass development in young adult men: a 5-year longitudinal study. J Bone Miner Res 27:2189–2197. https://doi.org/10.1002/jbmr.1674

    Article  PubMed  Google Scholar 

  51. Santiago HA, Zamarioli A, Sousa Neto MD, Volpon JB (2017) Exposure to secondhand smoke impairs fracture healing in rats. Clin Orthop Relat Res 475:894–902. https://doi.org/10.1007/s11999-016-5184-6

    Article  PubMed  Google Scholar 

  52. Sinaki M, Offord KP (1988) Physical activity in postmenopausal women: effect on back muscle strength and bone mineral density of the spine. Arch Phys Med Rehabil 69:277–280

    CAS  PubMed  Google Scholar 

  53. Nilsson M, Ohlsson C, Eriksson AL, Frändin K, Karlsson M, Ljunggren O et al (2008) Competitive physical activity early in life is associated with bone mineral density in elderly Swedish men. Osteoporos Int 19:1557–1566. https://doi.org/10.1007/s00198-008-0600-8

    Article  CAS  PubMed  Google Scholar 

  54. Michaëlsson K, Olofsson H, Jensevik K, Larsson S, Mallmin H, Berglund L et al (2007) Leisure physical activity and the risk of fracture in men. PLoS Med 4:e199. https://doi.org/10.1371/journal.pmed.0040199

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lagerros YT, Hantikainen E, Michaëlsson K, Ye W, Adami HO, Bellocco R (2017) Physical activity and the risk of hip fracture in the elderly: a prospective cohort study. Eur J Epidemiol 32:983–991. https://doi.org/10.1007/s10654-017-0312-5

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cizza G, Nguyen VT, Eskandari F, Duan Z, Wright EC, Reynolds JC et al (2010) Low 24-hour adiponectin and high nocturnal leptin concentrations in a case-control study of community-dwelling premenopausal women with major depressive disorder: the premenopausal, osteopenia/osteoporosis, women, alendronate, depression (POWER) study. J Clin Psychiatry 71:1079–1087. https://doi.org/10.4088/JCP.09m05314blu

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grace AA (2016) Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 17:524–532. https://doi.org/10.1038/nrn.2016.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yirmiya R, Goshen I, Bajayo A, Kreisel T, Feldman S, Tam J et al (2006) Depression induces bone loss through stimulation of the sympathetic nervous system. Proc Natl Acad Sci U S A 103:16876–16881. https://doi.org/10.1073/pnas.0604234103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barrett-Connor E, Von Mühlen DG, Kritz-Silverstein D (1999) Bioavailable testosterone and depressed mood in older men: the Rancho Bernardo study. J Clin Endocrinol Metab 84:573–577

    Article  CAS  PubMed  Google Scholar 

  60. Nelson HDM (2008) Lancet 371:760–770. https://doi.org/10.1016/s0140-6736(08)60346-3

    Article  PubMed  Google Scholar 

  61. Blunt BA, Klauber MR, Barrett-Connor EL, Edelstein SL (1994) Sex differences in bone mineral density in 1653 men and women in the sixth through tenth decades of life: the Rancho Bernardo study. J Bone Miner Res 9:1333–1338. https://doi.org/10.1002/jbmr.5650090903

    Article  CAS  PubMed  Google Scholar 

  62. Orwoll ES, Oviatt SK, Mann T (1990) The impact of osteophytic and vascular calcifications on vertebral mineral density measurements in men. J Clin Endocrinol Metab 70:1202–1207. https://doi.org/10.1210/jcem-70-4-1202

    Article  CAS  PubMed  Google Scholar 

  63. Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo N, Wilson SG et al (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371:1505–1512. https://doi.org/10.1016/s0140-6736(08)60599-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Willing M, Sowers M, Aron D, Clark MK, Burns T, Bunten C et al (1998) Bone mineral density and its change in white women: estrogen and vitamin D receptor genotypes and their interaction. J Bone Miner Res 13:695–705. https://doi.org/10.1359/jbmr.1998.13.4.695

    Article  CAS  PubMed  Google Scholar 

  65. Chrzastek Z, Guligowska A, Soltysik B, Pigłowska M, Borowiak E, Kostka J et al (2021) Association of lower nutritional status and education level with the severity of depression symptoms in older adults-a cross sectional survey. Nutrients 13. https://doi.org/10.3390/nu13020515

Download references

Acknowledgements

We thank the NHANES Project for providing the data free of charge and all NHANES Project staff and anonymous participants.

Funding

This work was supported by the National Natural Science Foundation of China (81874017, 81960403, and 82060405); the Natural Science Foundation of Gansu Province of China (20JR5RA320); and the Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital (CY2017-ZD02).

Author information

Authors and Affiliations

Authors

Contributions

Ming Ma designed the study and prepared the first draft of the paper. The authors Xiaolong Liu, Gengxin Jia, Zhongcheng Liu, Kun Zhang, and Liangzhi He contributed to the analysis work. The authors Bin Geng and Yayi Xia administrated, reviewed, edited, and supervised this work. All authors revised the paper critically for intellectual content and approved the final version. All authors agree to be accountable for the work and ensure that any questions relating to the accuracy and integrity of the paper are investigated and properly resolved. Ming Ma, Xiaolong Liu, and Gengxin Jia friendly shared the first authorship.

Corresponding author

Correspondence to Yayi Xia.

Ethics declarations

Ethics approval and consent to participate

The National Center for Health Statistics (NCHS) Research Ethics Review Board (ERB) approved this study. Participants were voluntary, confidential, and signed the informed consent form. Further information can be found at https://www.cdc.gov/nchs/nhanes/irba98.htm.

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Liu, X., Jia, G. et al. The association between depression and bone metabolism: a US nationally representative cross-sectional study. Arch Osteoporos 17, 113 (2022). https://doi.org/10.1007/s11657-022-01154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-022-01154-1

Keywords

Navigation