1932

Abstract

Flexible behavior requires guidance not only by sensations that are available immediately but also by relevant mental contents carried forward through working memory. Therefore, selective-attention functions that modulate the contents of working memory to guide behavior (inside-out) are just as important as those operating on sensory signals to generate internal contents (outside-in). We review the burgeoning literature on selective attention in the inside-out direction and underscore its functional, flexible, and future-focused nature. We discuss in turn the purpose (why), targets (what), sources (when), and mechanisms (how) of selective attention inside working memory, using visual working memory as a model. We show how the study of internal selective attention brings new insights concerning the core cognitive processes of attention and working memory and how considering selective attention and working memory together paves the way for a rich and integrated understanding of how mind serves behavior.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-021422-041757
2023-01-18
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/psych/74/1/annurev-psych-021422-041757.html?itemId=/content/journals/10.1146/annurev-psych-021422-041757&mimeType=html&fmt=ahah

Literature Cited

  1. Allport A. 1987. Selection for action: some behavioral and neurophysiological considerations of attention and action. Perspectives on Perception and Action H Heuer, A Sanders 395–419 London: Routledge
    [Google Scholar]
  2. Andersen RA, Snyder LH, Bradley DC, Xing J. 1997. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu. Rev. Neurosci. 20:303–30
    [Google Scholar]
  3. Astle DE, Summerfield J, Griffin I, Nobre AC 2012. Orienting attention to locations in mental representations. Atten. Percept. Psychophys. 74:1146–62
    [Google Scholar]
  4. Atkinson AL, Berry EDJ, Waterman AH, Baddeley AD, Hitch GJ, Allen RJ. 2018. Are there multiple ways to direct attention in working memory?. Ann. N.Y. Acad. Sci. 1424:1115–26
    [Google Scholar]
  5. Atkinson RC, Shiffrin RM 1968. Human memory: a proposed system and its control processes. Psychology of Learning and Motivation: Advances in Research and Theory, Vol. 2 KW Spence, JT Spence 89–195 New York: Academic
    [Google Scholar]
  6. Backer KC, Alain C 2012. Orienting attention to sound object representations attenuates change deafness. J. Exp. Psychol. Hum. Percept. Perform. 38:61554–66
    [Google Scholar]
  7. Backer KC, Buchsbaum BR, Alain C 2020. Orienting attention to short-term memory representations via sensory modality and semantic category retro-cues. eNeuro 7:6ENEURO.0018–20.2020
    [Google Scholar]
  8. Baddeley A. 2012. Working memory: theories, models, and controversies. Annu. Rev. Psychol. 63:1–29
    [Google Scholar]
  9. Baddeley AD, Hitch G. 1974. Working memory. Psychol. Learn. Motiv. 8:47–89
    [Google Scholar]
  10. Baldauf D, Deubel H. 2010. Attentional landscapes in reaching and grasping. Vis. Res. 50:11999–1013
    [Google Scholar]
  11. Ballard DH, Hayhoe MM, Pook PK, Rao RPN. 1997. Deictic codes for the embodiment of cognition. Behav. Brain Sci. 20:4723–42; discuss. 743–67
    [Google Scholar]
  12. Bartsch LM, Singmann H, Oberauer K. 2018. The effects of refreshing and elaboration on working memory performance, and their contributions to long-term memory formation. Mem. Cognit. 46:5796–808
    [Google Scholar]
  13. Boettcher SE, Gresch D, Nobre AC, van Ede F. 2021. Output planning at the input stage in visual working memory. Sci. Adv. 7:eabe8212
    [Google Scholar]
  14. Boettcher SEP, van Ede F, Nobre AC. 2020. Functional biases in attentional templates from associative memory. J. Vis. 20:137
    [Google Scholar]
  15. Brady TF, Konkle T, Alvarez GA. 2011. A review of visual memory capacity: beyond individual items and toward structured representations. J. Vis. 11:54
    [Google Scholar]
  16. Brass M, Liefooghe B, Braem S, De Houwer J. 2017. Following new task instructions: evidence for a dissociation between knowing and doing. Neurosci. Biobehav. Rev. 81:16–28
    [Google Scholar]
  17. Burgess N. 2006. Spatial memory: how egocentric and allocentric combine. Trends Cogn. Sci. 10:12551–57
    [Google Scholar]
  18. Cabeza R, Ciaramelli E, Olson IR, Moscovitch M. 2008. The parietal cortex and episodic memory: an attentional account. Nat. Rev. Neurosci. 9:8613–25
    [Google Scholar]
  19. Camos V, Johnson M, Loaiza V, Portrat S, Souza A, Vergauwe E. 2018. What is attentional refreshing in working memory?. Ann. N.Y. Acad. Sci. 1424:119–32
    [Google Scholar]
  20. Carrasco M. 2011. Visual attention: the past 25 years. Vis. Res. 51:131484–525
    [Google Scholar]
  21. Chatham CH, Badre D. 2015. Multiple gates on working memory. Curr. Opin. Behav. Sci. 1:23–31
    [Google Scholar]
  22. Christophel TB, Iamshchinina P, Yan C, Allefeld C, Haynes JD. 2018. Cortical specialization for attended versus unattended working memory. Nat. Neurosci. 21:494–96
    [Google Scholar]
  23. Chun MM, Golomb JD, Turk-Browne NB. 2011. A taxonomy of external and internal attention. Annu. Rev. Psychol. 62:73–101
    [Google Scholar]
  24. Cisek P. 2019. Resynthesizing behavior through phylogenetic refinement. Atten. Percept. Psychophys. 81:72265–87
    [Google Scholar]
  25. Cisek P, Kalaska JF. 2010. Neural mechanisms for interacting with a world full of action choices. Annu. Rev. Neurosci. 33:269–98
    [Google Scholar]
  26. Cohen NJ, Squire LR. 1980. Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science 210:4466207–10
    [Google Scholar]
  27. Corneil BD, Munoz DP. 2014. Overt responses during covert orienting. Neuron 82:61230–43
    [Google Scholar]
  28. Cowan N. 2001. The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci. 24:187–114
    [Google Scholar]
  29. Cowan N. 2010. The magical mystery four: How is working memory capacity limited, and why?. Curr. Dir. Psychol. Sci. 19:151–57
    [Google Scholar]
  30. de Vries IEJ, van Driel J, Karacaoglu M, Olivers CNL. 2018. Priority switches in visual working memory are supported by frontal delta and posterior alpha interactions. Cereb. Cortex 28:114090–104
    [Google Scholar]
  31. de Vries IEJ, van Driel J, Olivers CNL. 2017. Posterior α EEG dynamics dissociate current from future goals in working memory-guided visual search. J. Neurosci. 37:61591–603
    [Google Scholar]
  32. Desimone R, Duncan J. 1995. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18:193–222
    [Google Scholar]
  33. D'Esposito M, Postle BR 2015. The cognitive neuroscience of working memory. Annu. Rev. Psychol. 66:115–42
    [Google Scholar]
  34. Deubel H, Schneider WX. 1996. Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis. Res. 36:121827–37
    [Google Scholar]
  35. Dewey J. 1896. The reflex arc concept in psychology. Psychol. Rev. 3:4357–70
    [Google Scholar]
  36. Draschkow D, Kallmayer M, Nobre AC. 2021. When natural behavior engages working memory. Curr. Biol. 31:4869–74.e5
    [Google Scholar]
  37. Draschkow D, Nobre AC, van Ede F. 2022. Multiple spatial frames for immersive working memory. Nature Hum. Behav. 6:536–44
    [Google Scholar]
  38. Egly R, Driver J, Rafal RD. 1994. Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects. J. Exp. Psychol. Gen. 123:2161–77
    [Google Scholar]
  39. Eichenbaum H, Yonelinas AP, Ranganath C. 2007. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30:123–52
    [Google Scholar]
  40. Engel AK, Maye A, Kurthen M, König P. 2013. Where's the action? The pragmatic turn in cognitive science. Trends Cogn. Sci. 17:5202–9
    [Google Scholar]
  41. Fan JE, Turk-Browne NB. 2013. Internal attention to features in visual short-term memory guides object learning. Cognition 129:2292–308
    [Google Scholar]
  42. Fan Y, Han Q, Guo S, Luo H. 2021. Distinct neural representations of content and ordinal structure in auditory sequence memory. J. Neurosci. 41:296290–303
    [Google Scholar]
  43. Fawcett JM, Risko EF, Kingstone A, eds. 2015. The Handbook of Attention Cambridge, MA: MIT Press
  44. Fuster JM. 1973. Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J. Neurophysiol. 36:161–78
    [Google Scholar]
  45. Fuster JM, Bressler SL. 2012. Cognit activation: a mechanism enabling temporal integration in working memory. Trends Cogn. Sci. 16:4207–18
    [Google Scholar]
  46. Garavan H. 1998. Serial attention within working memory. Mem. Cogn. 26:2263–76
    [Google Scholar]
  47. Gehring WJ, Bryck RL, Jonides J, Albin RL, Badre D. 2003. The mind's eye, looking inward? In search of executive control in internal attention shifting. Psychophysiology 40:4572–85
    [Google Scholar]
  48. Goldberg ME, Wurtz RH. 1972. Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. J. Neurophysiol. 35:4560–74
    [Google Scholar]
  49. Gong M, Li S 2014. Learned reward association improves visual working memory. J. Exp. Psychol. Hum. Percept. Perform. 40:2841–56
    [Google Scholar]
  50. González-García C, Formica S, Liefooghe B, Brass M. 2020. Attentional prioritization reconfigures novel instructions into action-oriented task sets. Cognition 194:104059
    [Google Scholar]
  51. Goodale MA, Westwood DA, Milner AD. 2004. Two distinct modes of control for object-directed action. Prog. Brain Res 144:131–44
    [Google Scholar]
  52. Griffin IC, Nobre AC. 2003. Orienting attention to locations in internal representations. J. Cogn. Neurosci. 15:81176–94
    [Google Scholar]
  53. Groen IIA, Dekker TM, Knapen T, Silson EH. 2022. Visuospatial coding as ubiquitous scaffolding for human cognition. Trends Cogn. Sci. 26:181–96
    [Google Scholar]
  54. Hajonides JE, van Ede F, Stokes MG, Nobre AC. 2020. Comparing the prioritization of items and feature-dimensions in visual working memory. J. Vis. 20:825
    [Google Scholar]
  55. Hanning NM, Deubel H. 2018. Independent effects of eye and hand movements on visual working memory. Front. Syst. Neurosci. 12:37
    [Google Scholar]
  56. Hanning NM, Jonikaitis D, Deubel H, Szinte M. 2016. Oculomotor selection underlies feature retention in visual working memory. J. Neurophysiol. 115:21071–76
    [Google Scholar]
  57. Harrison SA, Tong F. 2009. Decoding reveals the contents of visual working memory in early visual areas. Nature 458:7238632–35
    [Google Scholar]
  58. Helmholtz H. 1867. Handbuch der Physiologischen Optik. In Allgemeine Encyklopädie der Physik G Karsten 37–51 Leipzig, Ger.: Voss
    [Google Scholar]
  59. Heuer A, Ohl S, Rolfs M. 2020. Memory for action: a functional view of selection in visual working memory. Vis. Cogn. 28:5–8388–400
    [Google Scholar]
  60. Heuer A, Rolfs M. 2021a. A direct comparison of attentional orienting to spatial and temporal positions in visual working memory. Psychon. Bull. Rev. 29:182–90
    [Google Scholar]
  61. Heuer A, Rolfs M. 2021b. Incidental encoding of visual information in temporal reference frames in working memory. Cognition 207:104526
    [Google Scholar]
  62. Heuer A, Schubö A. 2016. Feature-based and spatial attentional selection in visual working memory. Mem. Cogn. 44:4621–32
    [Google Scholar]
  63. Heuer A, Schubö A. 2017. Selective weighting of action-related feature dimensions in visual working memory. Psychon. Bull. Rev. 24:41129–34
    [Google Scholar]
  64. Hommel B, Müsseler J, Aschersleben G, Prinz W. 1994. The theory of event-coding (TEC): a framework for perception and action planning. Behav. Brain Sci. 24:849–78
    [Google Scholar]
  65. Hu Y, Hitch GJ, Baddeley AD, Zhang M, Allen RJ. 2014. Executive and perceptual attention play different roles in visual working memory: evidence from suffix and strategy effects. J. Exp. Psychol. Hum. Percept. Perform. 40:41665–78
    [Google Scholar]
  66. James W. 1890. The Principles of Psychology New York: Henry Holt & Co.
  67. Janczyk M, Berryhill ME. 2014. Orienting attention in visual working memory requires central capacity: decreased retro-cue effects under dual-task conditions. Atten. Percept. Psychophys. 76:3715–24
    [Google Scholar]
  68. Johnson MK. 1992. MEM: mechanisms of recollection. J. Cogn. Neurosci. 4:3268–80
    [Google Scholar]
  69. Jonides J. 1981. Voluntary versus automatic control over the mind's eye's movement. Attention and Performance JB Long, AD Baddely 187–203 Mahwah, NJ: Lawrence Erlbaum
    [Google Scholar]
  70. Kalogeropoulou Z, Jagadeesh AV, Ohl S, Rolfs M. 2017. Setting and changing feature priorities in visual short-term memory. Psychon. Bull. Rev. 24:2453–58
    [Google Scholar]
  71. Katus T, Grubert A, Eimer M. 2017. Intermodal attention shifts in multimodal working memory. J. Cogn. Neurosci. 29:4628–36
    [Google Scholar]
  72. Kikumoto A, Mayr U. 2020. Conjunctive representations that integrate stimuli, responses, and rules are critical for action selection. PNAS 117:1910603–8
    [Google Scholar]
  73. Kiyonaga A, Egner T. 2013. Working memory as internal attention: toward an integrative account of internal and external selection processes. Psychon. Bull. Rev. 20:2228–42
    [Google Scholar]
  74. Kong G, Fougnie D. 2019. Visual search within working memory. J. Exp. Psychol. Gen. 148:101688–700
    [Google Scholar]
  75. Kowler E, Anderson E, Dosher B, Blaser E 1995. The role of attention in the programming of saccades. Vis. Res. 35:131897–916
    [Google Scholar]
  76. Krauzlis RJ, Lovejoy LP, Zénon A. 2013. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 36:165–82
    [Google Scholar]
  77. Kuo B-C, Rao A, Lepsien J, Nobre AC. 2009. Searching for targets within the spatial layout of visual short-term memory. J. Neurosci. 29:258032–38
    [Google Scholar]
  78. Kuo B-C, Stokes MG, Murray AM, Nobre AC. 2014. Attention biases visual activity in visual short-term memory. J. Cogn. Neurosci. 26:71377–89
    [Google Scholar]
  79. Kuo B-C, Stokes MG, Nobre AC. 2012. Attention modulates maintenance of representations in visual short-term memory. J. Cogn. Neurosci. 24:151–60
    [Google Scholar]
  80. Landman R, Spekreijse H, Lamme VAF. 2003. Large capacity storage of integrated objects before change blindness. Vis. Res. 43:2149–64
    [Google Scholar]
  81. Lee J, Geng JJ. 2019. Flexible weighting of target features based on distractor context. Atten. Percept. Psychophys. 82:2739–51
    [Google Scholar]
  82. Lepsien J, Nobre AC. 2007. Attentional modulation of object representations in working memory. Cereb. Cortex 17:92072–83
    [Google Scholar]
  83. Lewis-Peacock JA, Drysdale AT, Oberauer K, Postle BR. 2012. Neural evidence for a distinction between short-term memory and the focus of attention. J. Cogn. Neurosci. 24:161–79
    [Google Scholar]
  84. Li J, Huang Q, Han Q, Mi Y, Luo H 2021. Temporally coherent perturbation of neural dynamics during retention alters human multi-item working memory. Prog. Neurobiol. 201:102023
    [Google Scholar]
  85. Lin Y-t, Kong G, Fougnie D. 2021a. Object-based selection in visual working memory. Psychon. Bull. Rev. 28:61961–71
    [Google Scholar]
  86. Lin Y-t, Sasin E, Fougnie D. 2021b. Selection in working memory is resource-demanding: concurrent task effects on the retro-cue effect. Atten. Percept. Psychophys. 83:41600–12
    [Google Scholar]
  87. Liu B, Nobre AC, van Ede F. 2022. Functional but not obligatory link between microsaccades and neural modulation by covert spatial attention. Nat. Commun. 13:3503
    [Google Scholar]
  88. Luck SJ, Vogel EK. 1997. The capacity of visual working memory for features and conjunctions. Nature 390:6657279–81
    [Google Scholar]
  89. Makovski T, Sussman R, Jiang YV. 2008. Orienting attention in visual working memory reduces interference from memory probes. J. Exp. Psychol. Learn. Mem. Cogn. 34:2369–80
    [Google Scholar]
  90. Maunsell JHR, Newsome WT. 1987. Visual processing in monkey extrastriate cortex. Annu. Rev. Neurosci. 10:363–401
    [Google Scholar]
  91. McElree B, Dosher BA. 1989. Serial position and set size in short-term memory: the time course of recognition. J. Exp. Psychol. Gen. 118:4346–73
    [Google Scholar]
  92. Miller GA, Galanter E, Pribram KH. 1960. Plans and the Structure of Behavior New York: Henry Holt & Co.
  93. Mok RM, Myers NE, Wallis G, Nobre AC 2016. Behavioral and neural markers of flexible attention over working memory in aging. Cereb. Cortex 26:41831–42
    [Google Scholar]
  94. Moore T, Armstrong KM, Fallah M. 2003. Visuomotor origins of covert spatial attention. Neuron 40:4671–83
    [Google Scholar]
  95. Muhle-Karbe PS, Myers NE, Stokes MG. 2021. A hierarchy of functional states in working memory. J. Neurosci. 41:204461–75
    [Google Scholar]
  96. Murray AM, Nobre AC, Clark IA, Cravo AM, Stokes MG. 2013. Attention restores discrete items to visual short-term memory. Psychol. Sci. 24:4550–56
    [Google Scholar]
  97. Myers NE, Chekroud SR, Stokes MG, Nobre AC. 2018. Benefits of flexible prioritization in working memory can arise without costs. J. Exp. Psychol. Hum. Percept. Perform. 44:3398–411
    [Google Scholar]
  98. Myers NE, Stokes MG, Nobre AC. 2017. Prioritizing information during working memory: beyond sustained internal attention. Trends Cogn. Sci. 21:6449–61
    [Google Scholar]
  99. Nasrawi R, van Ede F. 2022. Planning the potential future during multi-item visual working memory. J. Cogn. Neurosci. 34:81534–46
    [Google Scholar]
  100. Nee DE, Jonides J. 2008. Neural correlates of access to short-term memory. PNAS 105:3714228–33
    [Google Scholar]
  101. Nee DE, Jonides J. 2013. Trisecting representational states in short-term memory. Front. Hum. Neurosci.7796
    [Google Scholar]
  102. Nelissen N, Stokes M, Nobre AC, Rushworth MFS. 2013. Frontal and parietal cortical interactions with distributed visual representations during selective attention and action selection. J. Neurosci. 33:4216443–58
    [Google Scholar]
  103. Newsome RN, Duarte A, Pun C, Smith VM, Ferber S, Barense MD. 2015. A retroactive spatial cue improved VSTM capacity in mild cognitive impairment and medial temporal lobe amnesia but not in healthy older adults. Neuropsychologia 77:148–57
    [Google Scholar]
  104. Niklaus M, Nobre AC, van Ede F. 2017. Feature-based attentional weighting and spreading in visual working memory. Sci. Rep. 7:42384
    [Google Scholar]
  105. Niklaus M, Singmann H, Oberauer K. 2019. Two distinct mechanisms of selection in working memory: additive last-item and retro-cue benefits. Cognition 183:282–302
    [Google Scholar]
  106. Nobre AC, Coull JT, Maquet P, Frith CD, Vandenberghe R, Mesulam MM. 2004. Orienting attention to locations in perceptual versus mental representations. J. Cogn. Neurosci. 16:3363–73
    [Google Scholar]
  107. Nobre AC, Griffin IC, Rao A. 2008. Spatial attention can bias search in visual short-term memory. Front. Hum. Neurosci. 1:4) 10.3389/neuro.09.004.2007
    [Google Scholar]
  108. Nobre AC, Kastner S, eds. 2014. The Oxford Handbook of Attention Oxford, UK: Oxford Univ. Press
  109. Nobre AC, Mesulam MM. 2014. Large-scale networks for attentional biases. The Oxford Handbook of Attention AC Nobre, S Kastner 105–51 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  110. Nobre AC, Stokes MG. 2019. Premembering experience: a hierarchy of time-scales for proactive attention. Neuron 104:1132–46
    [Google Scholar]
  111. Nobre AC, van Ede F. 2020. Under the mind's hood: what we have learned by watching the brain at work. J. Neurosci. 40:189–100
    [Google Scholar]
  112. Oberauer K. 2002. Access to information in working memory: exploring the focus of attention. J. Exp. Psychol. Learn. Mem. Cogn. 28:3411–21
    [Google Scholar]
  113. Oberauer K. 2010. Declarative and procedural working memory: common principles, common capacity limits?. Psychol Belg 50:3–4277–308
    [Google Scholar]
  114. Ohl S, Rolfs M. 2017. Saccadic eye movements impose a natural bottleneck on visual short-term memory. J. Exp. Psychol. Learn. Mem. Cogn. 43:5736–48
    [Google Scholar]
  115. Ohl S, Rolfs M. 2018. Saccadic selection of stabilized items in visuospatial working memory. Conscious. Cogn. 64:32–44
    [Google Scholar]
  116. Ohl S, Rolfs M. 2020. Bold moves: inevitable saccadic selection in visual short-term memory. J Vis 20:211
    [Google Scholar]
  117. Olivers CNL, Peters J, Houtkamp R, Roelfsema PR. 2011. Different states in visual working memory: when it guides attention and when it does not. Trends Cogn. Sci. 15:7327–34
    [Google Scholar]
  118. Olivers CNL, Roelfsema PR. 2020. Attention for action in visual working memory. Cortex 131:179–94
    [Google Scholar]
  119. Panichello M, Buschman T. 2021. Shared mechanisms underlie the control of working memory and attention. Nature 592:601–5
    [Google Scholar]
  120. Park YE, Sy JL, Hong SW, Tong F. 2017. Reprioritization of features of multidimensional objects stored in visual working memory. Psychol. Sci. 28:121773–85
    [Google Scholar]
  121. Pelz JB, Canosa R. 2001. Oculomotor behavior and perceptual strategies in complex tasks. Vis. Res. 41:25–263587–96
    [Google Scholar]
  122. Pertzov Y, Bays PM, Joseph S, Husain M 2013. Rapid forgetting prevented by retrospective attention cues. J. Exp. Psychol. Hum. Percept. Perform. 39:51224–31
    [Google Scholar]
  123. Peters B, Kaiser J, Rahm B, Bledowski C. 2015. Activity in human visual and parietal cortex reveals object-based attention in working memory. J. Neurosci. 35:83360–69
    [Google Scholar]
  124. Poch C, Capilla A, Hinojosa JA, Campo P. 2017. Selection within working memory based on a color retro-cue modulates alpha oscillations. Neuropsychologia 106:133–37
    [Google Scholar]
  125. Posner MI, Cohen Y 1984. Components of visual orienting. Attention and Performance H Bouma, D Bouwhuis 531–54 Mahwah, NJ: Lawrence Erlbaum
    [Google Scholar]
  126. Rademaker RL, Chunharas C, Serences JT. 2019. Coexisting representations of sensory and mnemonic information in human visual cortex. Nat. Neurosci. 22:1336–44
    [Google Scholar]
  127. Rasoulzadeh V, Sahan MI, Van Dijck JP, Abrahamse E, Marzecova A et al. 2021. Spatial attention in serial order working memory: an EEG study. Cereb. Cortex 31:52482–93
    [Google Scholar]
  128. Rerko L, Oberauer K. 2013. Focused, unfocused, and defocused information in working memory. J. Exp. Psychol. Learn. Mem. Cogn. 39:41075–96
    [Google Scholar]
  129. Rerko L, Souza AS, Oberauer K. 2014. Retro-cue benefits in working memory without sustained focal attention. Mem. Cogn. 42:5712–28
    [Google Scholar]
  130. Rizzolatti G, Riggio L, Dascola I, Umiltá C. 1987. Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25:131–40
    [Google Scholar]
  131. Rose NS, LaRocque JJ, Riggall AC, Gosseries O, Starrett MJ et al. 2016. Reactivation of latent working memories with transcranial magnetic stimulation. Science 354:63161136–39
    [Google Scholar]
  132. Schacter DL, Addis DR, Buckner RL. 2007. Remembering the past to imagine the future: the prospective brain. Nat. Rev. Neurosci. 8:657–61
    [Google Scholar]
  133. Schneegans S, Bays PM. 2017. Neural architecture for feature binding in visual working memory. J. Neurosci. 37:143913–25
    [Google Scholar]
  134. Schneider D, Barth A, Wascher E. 2017. On the contribution of motor planning to the retroactive cuing benefit in working memory: evidence by mu and beta oscillatory activity in the EEG. Neuroimage 162:73–85
    [Google Scholar]
  135. Schneider D, Mertes C, Wascher E. 2016. The time course of visuo-spatial working memory updating revealed by a retro-cuing paradigm. Sci. Rep. 6:21442
    [Google Scholar]
  136. Schroeder CE, Wilson DA, Radman T, Scharfman H, Lakatos P. 2010. Dynamics of active sensing and perceptual selection. Curr. Opin. Neurobiol. 20:2172–76
    [Google Scholar]
  137. Serences JT, Ester EF, Vogel EK, Awh E. 2009. Stimulus-specific delay activity in human primary visual cortex. Psychol. Sci. 20:2207–14
    [Google Scholar]
  138. Shimi A, Nobre AC, Astle D, Scerif G. 2014. Orienting attention within visual short-term memory: development and mechanisms. Child Dev 85:2578–92
    [Google Scholar]
  139. Sligte IG, Scholte HS, Lamme VAF. 2008. Are there multiple visual short-term memory stores?. PLOS ONE 3:2e1699
    [Google Scholar]
  140. Sligte IG, Scholte HS, Lamme VAF. 2009. V4 activity predicts the strength of visual short-term memory representations. J. Neurosci. 29:237432–38
    [Google Scholar]
  141. Soto D, Humphreys GW. 2007. Automatic guidance of visual attention from verbal working memory. J. Exp. Psychol. Hum. Percept. Perform. 33:3730–37
    [Google Scholar]
  142. Souza AS, Oberauer K. 2016. In search of the focus of attention in working memory: 13 years of the retro-cue effect. Atten. Percept. Psychophys. 78:71839–60
    [Google Scholar]
  143. Souza AS, Rerko L, Lin HY, Oberauer K. 2014. Focused attention improves working memory: implications for flexible-resource and discrete-capacity models. Atten. Percept. Psychophys. 76:72080–102
    [Google Scholar]
  144. Souza AS, Rerko L, Oberauer K. 2015. Refreshing memory traces: Thinking of an item improves retrieval from visual working memory. Ann. N.Y. Acad. Sci. 1339:20–31
    [Google Scholar]
  145. Sperling G. 1960. The information available in brief visual presentations. Psychol. Monogr. Gen. Appl. 74:111–29
    [Google Scholar]
  146. Spitzer B, Blankenburg F. 2011. Stimulus-dependent EEG activity reflects internal updating of tactile working memory in humans. PNAS 108:208444–49
    [Google Scholar]
  147. Spivey MJ, Geng JJ. 2001. Oculomotor mechanisms activated by imagery and memory: eye movements to absent objects. Psychol. Res. 65:4235–41
    [Google Scholar]
  148. Sprague TC, Ester EF, Serences JT. 2016. Restoring latent visual working memory representations in human cortex. Neuron 91:3694–707
    [Google Scholar]
  149. Sreenivasan KK, Curtis CE, D'Esposito M 2014. Revisiting the role of persistent neural activity during working memory. Trends Cogn. Sci. 18:282–89
    [Google Scholar]
  150. Stokes MG. 2015.. “ Activity-silent” working memory in prefrontal cortex: a dynamic coding framework. Trends Cogn. Sci. 19:7394–405
    [Google Scholar]
  151. Strunk J, Morgan L, Reaves S, Verhaeghen P, Duarte A, Gutchess A. 2019. Retrospective attention in short-term memory has a lasting effect on long-term memory across age. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 74:81317–25
    [Google Scholar]
  152. Tanji J. 2001. Sequential organization of multiple movements: involvement of cortical motor areas. Annu. Rev. Neurosci. 24:631–51
    [Google Scholar]
  153. Tatler BW, Land MF. 2011. Vision and the representation of the surroundings in spatial memory. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 366: 1564.596–610
    [Google Scholar]
  154. van Ede F. 2020. Visual working memory and action: functional links and bi-directional influences. Vis. Cogn. 28:5–8401–13
    [Google Scholar]
  155. van Ede F, Board AG, Nobre AC. 2020. Goal-directed and stimulus-driven selection of internal representations. PNAS 117:3924590–98
    [Google Scholar]
  156. van Ede F, Chekroud SR, Nobre AC. 2019a. Human gaze tracks attentional focusing in memorized visual space. Nat. Hum. Behav. 3:5462–70
    [Google Scholar]
  157. van Ede F, Chekroud SR, Stokes MG, Nobre AC. 2019b. Concurrent visual and motor selection during visual working memory guided action. Nat. Neurosci. 22:3477–83
    [Google Scholar]
  158. van Ede F, Deden J, Nobre AC. 2021. Looking ahead in working memory to guide sequential behaviour. Curr. Biol. 31:12R779–80
    [Google Scholar]
  159. van Ede F, Niklaus M, Nobre AC. 2017. Temporal expectations guide dynamic prioritization in visual working memory through attenuated α oscillations. J. Neurosci. 37:2437–45
    [Google Scholar]
  160. van Ede F, Nobre AC. 2021. Toward a neurobiology of internal selective attention. Trends Neurosci 44:7513–15
    [Google Scholar]
  161. van Ede F, Nobre AC. 2022. A neural decision signal during internal sampling from working memory. bioRxiv https://doi.org/10.1101/2022.03.31.486618
    [Crossref] [Google Scholar]
  162. van Moorselaar D, Battistoni E, Theeuwes J, Olivers CNL. 2015a. Rapid influences of cued visual memories on attentional guidance. Ann. N.Y. Acad. Sci. 1339:11–10
    [Google Scholar]
  163. van Moorselaar D, Günseli E, Theeuwes J, Olivers CNL. 2015b. The time course of protecting a visual memory representation from perceptual interference. Front. Hum. Neurosci. 8:1053
    [Google Scholar]
  164. van Moorselaar D, Olivers CNL, Theeuwes J, Lamme VAF, Sligte IG. 2015c. Forgotten but not gone: Retro-cue costs and benefits in a double-cueing paradigm suggest multiple states in visual short-term memory. J. Exp. Psychol. Learn. Mem. Cogn. 41:61755–63
    [Google Scholar]
  165. Verschooren S, Egner T. 2022. When the mind's eye prevails: the internal dominance over external attention (IDEA) hypothesis. . PsyArXiv https://doi.org/10.31234/osf.io/x34de
    [Crossref]
  166. Wallis G, Stokes M, Cousijn H, Woolrich M, Nobre AC. 2015. Frontoparietal and cingulo-opercular networks play dissociable roles in control of working memory. J. Cogn. Neurosci. 27:102019–34
    [Google Scholar]
  167. Weber RJ, Burt DB, Noll NC. 1986. Attention switching between perception and memory. Mem. Cogn. 14:3238–45
    [Google Scholar]
  168. Wolff MJ, Jochim J, Akyürek EG, Stokes MG. 2017. Dynamic hidden states underlying working-memory-guided behavior. Nat. Neurosci. 20:6864–71
    [Google Scholar]
  169. Ye C, Hu Z, Ristaniemi T, Gendron M, Liu Q. 2016. Retro-dimension-cue benefit in visual working memory. Sci. Rep. 6:35573
    [Google Scholar]
  170. Zokaei N, Board AG, Manohar SG, Nobre AC. 2019. Modulation of the pupillary response by the content of visual working memory. PNAS 116:4522802–10
    [Google Scholar]
  171. Zokaei N, Ning S, Manohar S, Feredoes E, Husain M. 2014. Flexibility of representational states in working memory. Front. Hum. Neurosci. 8:853
    [Google Scholar]
/content/journals/10.1146/annurev-psych-021422-041757
Loading
/content/journals/10.1146/annurev-psych-021422-041757
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error