Skip to main content
Log in

The estimation of wheat tiller number based on UAV images and gradual change features (GCFs)

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Wheat (Triticum aestivum L.) is an essential crop that is widely consumed globally. The tiller density is an important factor affecting wheat yield. Therefore, it is necessary to measure the number of tillers during wheat cultivation and breeding, which requires considerable labor and material resources. At present, there is no effective high-throughput measurement method for tiller number estimation, and the conventional tiller survey method cannot accurately reflect the spatial variation of wheat tiller density within the whole field. Therefore, in order to meet the demand for the thematic map of wheat tiller density at the field scale for the variable operation of nitrogen fertilizer, the multispectral images of wheat in Feekes growth stages 2–3 were obtained by unmanned aerial vehicle (UAV), and the characteristic parameters of the number of tillers were used to construct a model that could accurately estimate the number of tillers. Based on the vegetation index (VIs), this work proposed a gradual change features (GCFs) approach, which can greatly improve the disadvantages of using VIs to estimate tiller number, better reflect the tiller status of the wheat population, and have good results on the estimation of tiller in common models. A Lasso + VIs + GCFs method was constructed for accurate estimation of tiller number in multiple growth periods and fertilizer-treated wheat, with an average RMSE of fewer than 9 tillers per square meter, average MAE less than 8 tillers per square meter, and R2 above 0.7. The results of the study not only proposed a high-throughput measurement method for the number of tillers but also provided a reference for the estimation of tiller number and other agronomic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abichou, M., Fournier, C., Dornbusch, T., Chambon, C., de Solan, B., Gouache, D., & Andrieu, B. (2018). Parameterising wheat leaf and tiller dynamics for faithful reconstruction of wheat plants by structural plant models. Field Crops Research, 218, 213–230.

    Article  Google Scholar 

  • Assmann, J. J., Kerby, J. T., Cunliffe, A. M., & Myers-Smith, I. H. (2019). Vegetation monitoring using multispectral sensors—best practices and lessons learned from high latitudes. Journal of Unmanned Vehicle Systems, 7(1), 54–75.

    Article  Google Scholar 

  • Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35(2–3), 161–173.

    Article  Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

    Article  Google Scholar 

  • Boyle, R. D., Corke, F. M. K., & Doonan, J. H. (2016). Automated estimation of tiller number in wheat by ribbon detection. Machine Vision and Applications, 27(5), 637–646.

    Article  Google Scholar 

  • Broge, N. H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2), 156–172.

    Article  Google Scholar 

  • Chauhan, S., Darvishzadeh, R., van Delden, S. H., Boschetti, M., & Nelson, A. (2021). Mapping of wheat lodging susceptibility with synthetic aperture radar data. Remote Sensing of Environment, 259, 112427.

    Article  Google Scholar 

  • Chen, J., Cheng, S., Cao, W., & Zhou, X. (1998). Involvement of endogenous plant hormones in the effect of mixed nitrogen source on growth and tillering of wheat. Journal of Plant Nutrition, 21(1), 87–97.

    Article  CAS  Google Scholar 

  • Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22(3), 229–242.

    Article  Google Scholar 

  • Cover, T. M., & Hart, P. E. (1953). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27.

    Article  Google Scholar 

  • Donald, C. M. (1968). The breeding of crop ideotypes. Euphytica, 17(3), 385–403.

    Article  Google Scholar 

  • Dong, T., Liu, J., Qian, B., He, L., Liu, J., Wang, R., et al. (2020). Estimating crop biomass using leaf area index derived from Landsat 8 and Sentinel-2 data. ISPRS Journal of Photogrammetry and Remote Sensing, 168, 236–250.

    Article  Google Scholar 

  • Fang, Y., Qiu, X., Guo, T., Wang, Y., Cheng, T., Zhu, Y., et al. (2020). An automatic method for counting wheat tiller number in the field with terrestrial LiDAR. Plant Methods, 16(1), 1–14.

    Article  Google Scholar 

  • Fernandez-Gallego, J. A., Kefauver, S. C., Gutiérrez, N. A., Nieto-Taladriz, M. T., & Araus, J. L. (2018). Wheat ear counting in-field conditions: High throughput and low-cost approach using RGB images. Plant Methods, 14(1), 22.

    Article  Google Scholar 

  • Flowers, M., Weisz, R., & Heiniger, R. (2001). Remote sensing of winter wheat tiller density for early nitrogen application decisions. Agronomy Journal, 93(4), 272–281.

    Article  Google Scholar 

  • Freund, Y., & Schapire, R. E. (1997). A desicion-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119–139.

    Article  Google Scholar 

  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics. https://doi.org/10.1214/aos/1013203451

    Article  Google Scholar 

  • García, C. B., García, J., López Martín, M. M., & Salmerón, R. (2015). Collinearity: Revisiting the variance inflation factor in ridge regression. Journal of Applied Statistics, 42(3), 648–661.

    Article  Google Scholar 

  • Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: A tutorial. Analytica Chimica Acta, 185(1), 1–17.

    Article  CAS  Google Scholar 

  • Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1), 3–42.

    Article  Google Scholar 

  • Gitelson, A. A., Zur, Y., Chivkunova, O. B., & Merzlyak, M. N. (2010). Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry & Photobiology, 75(3), 272–281.

    Article  Google Scholar 

  • Goel, N. S., & Qin, W. (1994). Influences of canopy architecture on relationships between various vegetation indices and LAI and Fpar: A computer simulation. Remote Sensing Reviews, 10(4), 309–347.

    Article  Google Scholar 

  • Guo, D., Dang, T. H., & Qi, L. H. (2008). Process study of dry matter accumulation and nitrogen absorption use of winter wheat under different N-fertilizer rates on dry highland of loess plateau. Journal of Soil and Water Conservation, 22(5), 138–141.

    Google Scholar 

  • Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352.

    Article  Google Scholar 

  • Hansen, P. M., & Schjoerring, J. K. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86(4), 542–553.

    Article  Google Scholar 

  • Hiltbrunner, J., Streit, B., & Liedgens, M. (2007). Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover? Field Crops Research, 102(3), 163–171.

    Article  Google Scholar 

  • Hu, Y., Ren, T., Li, Z., Tang, Y., Ren, Z., & Yan, B. (2017). Molecular mapping and genetic analysis of a QTL controlling spike formation rate and tiller number in wheat. Gene, 634, 15–21.

    Article  CAS  Google Scholar 

  • Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment., 25, 295–309.

    Article  Google Scholar 

  • Hui, Q. L., & Huete, A. (1995). A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience & Remote Sensing, 33(2), 457–465.

    Article  Google Scholar 

  • Ishikura, K., Fueki, N., Suda, T., Sugikawa, Y., & Tou, S. (2020). Estimation of nitrogen uptake and tiller number of winter wheat using a handheld optical sensor in Hokkaido, Japan. Soil Science and Plant Nutrition, 66(6), 828–836.

    Article  CAS  Google Scholar 

  • Jin, X., Liu, S., Baret, F., Hemerlé, M., & Comar, A. (2017). Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sensing of Environment, 198, 105–114.

    Article  Google Scholar 

  • Jin, X., Madec, S., Dan, D., Solan, B. D., & Frederic, B. (2019). High-throughput measurements of stem characteristics to estimate ear density and above-ground biomass. Plant Phenomics, 2019(1), 80–89.

    Google Scholar 

  • Li, F., Mistele, B., Hu, Y., Chen, X., & Schmidhalter, U. (2014). Optimising three-band spectral indices to assess aerial N concentration, N uptake and aboveground biomass of winter wheat remotely in China and Germany. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 112–123.

    Article  Google Scholar 

  • Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R News, 23(23), 18–22.

    Google Scholar 

  • Liu, S., Baret, F., Allard, D., Jin, X., & Andrieu, B. (2017). A method to estimate plant density and plant spacing heterogeneity: Application to wheat crops. Plant Methods. https://doi.org/10.1186/s13007-017-0187-1

    Article  Google Scholar 

  • Liu, T., Yang, T., Li, C., Li, R., Wu, W., Zhong, X., et al. (2018a). A method to calculate the number of wheat seedlings in the 1st to the 3rd leaf growth stages. Plant Methods, 14, 101.

    Article  CAS  Google Scholar 

  • Liu, W., Huang, J., Wei, C., Wang, X., Mansaray, L. R., Han, J., et al. (2018b). Mapping water-logging damage on winter wheat at parcel level using high spatial resolution satellite data. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 243–256.

    Article  Google Scholar 

  • Marill, K. (2004). Advanced statistics: Linear regression, part II: Multiple linear regression. Academic Emergency Medicine, 11(1), 87–93.

    Article  Google Scholar 

  • Naes, T., & Mevik, B.-H. (2001). Understanding the collinearity problem in regression and discriminant analysis: Collinearity problem in regression and discriminant analysis. Journal of Chemometrics, 15(4), 413–426.

    Article  CAS  Google Scholar 

  • Phillips, S. B., Keahey, D. A., Warren, J. G., & Mullins, G. L. (2004). Estimating winter wheat tiller density using spectral reflectance sensors for early-spring, variable-rate nitrogen applications. Agronomy Journal, 96(3), 591–600.

    Article  Google Scholar 

  • Rasmussen, P. E., Rickman, R. W., & Kleeper, B. L. (1997). Residue and fertility effects on yield of no-till wheat. Agronomy Journal, 89(4), 563–567.

    Article  Google Scholar 

  • Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107.

    Article  Google Scholar 

  • Rouse, J. W. (1974). Monitoring the vernal advancement of retrogradation (green wave effect) of natural vegetation. Nasa/gsfc Type Iii.final Report.greenbelt Md, 371.

  • Sadeghi-Te Hran, P., Virlet, N., Ampe, E. M., Reyns, P., & Hawkesford, M. J. (2019). Deepcount: In-field automatic quantification of wheat spikes using simple linear iterative clustering and deep convolutional neural networks. Frontiers in Plant Science, 10, 1176.

    Article  Google Scholar 

  • Schleicher, T. D., Bausch, W. C., Delgado, J. A., & Ayers, P. D. (1998). Evaluation and refinement of the nitrogen reflectance index (NIR) for site-specific fertilizer management. 2001 ASAE Annual Meeting. American Society of Agricultural and Biological Engineers.

  • Scotford, I. M., & Miller, P. C. H. (2004). Estimating tiller density and leaf area index of winter wheat using spectral reflectance and ultrasonic sensing techniques. Biosystems Engineering, 89(4), 395–408.

    Article  Google Scholar 

  • Shirazi, S. Z., Mei, X., Liu, B., & Liu, Y. (2022). Estimating potential yield and change in water budget for wheat and maize across Huang-Huai-Hai Plain in the future. Agricultural Water Management, 260, 107282.

    Article  Google Scholar 

  • Siddique, K. H. M., Kirby, E. J. M., & Perry, M. W. (1989). Ear: Stem ratio in old and modern wheat varieties; relationship with improvement in number of grains per ear and yield. Field Crops Research, 21(1), 59–78.

    Article  Google Scholar 

  • Smola, A. J., & Lkopf, B. S. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222.

    Article  Google Scholar 

  • Tao, L., Rui, L., Xiuliang, J., Jinfeng, D., Xinkai, Z., Chengming, S., & Wenshan, G. (2017). Evaluation of seed emergence uniformity of mechanically sown wheat with UAV RGB imagery. Remote Sensing, 9(12), 1–15.

    Google Scholar 

  • Tian, H., Wang, P., Tansey, K., Zhang, J., Zhang, S., & Li, H. (2021). An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong Plain, PR China. Agricultural and Forest Meteorology, 310, 108629.

    Article  Google Scholar 

  • Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society Series B (methodological), 58(1), 267–288.

    Article  Google Scholar 

  • Velumani, K., Madec, S., de Solan, B., Lopez-Lozano, R., Gillet, J., Labrosse, J., et al. (2020). An automatic method based on daily in situ images and deep learning to date wheat heading stage. Field Crops Research, 252, 107793.

    Article  Google Scholar 

  • Wang, H., Sun, S., Ge, W., Zhao, L., & Kong, L. (2020). Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 368(6493), eaba5435.

    Article  CAS  Google Scholar 

  • Wang, K., Shen, Z. Q., & Wang, R. C. (1998). Effects of nitrogen nutrition on the spectral reflectance characteristics of rice leaf and canopy. Journal of Zhejiang University (agriculture and Life Sciences), 24(1), 93–97.

    Google Scholar 

  • Wang, X. (1996). Cytokinins in enhanced growth and tillering of wheat induced by mixed nitrogen source. Crop Science, 36(1), 121–126.

    Article  CAS  Google Scholar 

  • Weisz, R., Crozier, C. R., & Heiniger, R. W. (2001). Optimizing nitrogen application timing in no-till soft red winter wheat. Agronomy Journal, 93(2), 435–442.

    Article  Google Scholar 

  • Wu, D., Wu, D., Feng, H., Duan, L., Dai, G., Liu, X., et al. (2021). A deep learning-integrated micro-CT image analysis pipeline for quantifying rice lodging resistance-related traits. Plant Communications, 2(2), 100165.

    Article  CAS  Google Scholar 

  • Yi, Y., Yang, D., Huang, J., & Chen, D. (2008). Evaluation of MODIS surface reflectance products for wheat leaf area index (LAI) retrieval. ISPRS Journal of Photogrammetry and Remote Sensing, 63(6), 661–677.

    Article  Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415–421.

    Article  Google Scholar 

  • Zhang, C., Liu, J., Shang, J., Dong, T., Tang, M., Feng, S., & Cai, H. (2021). Improving winter wheat biomass and evapotranspiration simulation by assimilating leaf area index from spectral information into a crop growth model. Agricultural Water Management, 255, 107057.

    Article  Google Scholar 

  • Zhang, H.-Y., Ren, X.-X., Zhou, Y., Wu, Y.-P., He, L., Heng, Y.-R., et al. (2018). Remotely assessing photosynthetic nitrogen use efficiency with in situ hyperspectral remote sensing in winter wheat. European Journal of Agronomy, 101, 90–100.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (32172110, 32001465, 31872852), the National Key Research and Development Program of China (2018YFD0300805), the Key Research and Development Program (Modern Agriculture) of Jiangsu Province (BE2020319), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Special Fund for Independent Innovation of Agricultural Science and Technology in Jiangsu, China (CX (21) 3065).

Author information

Authors and Affiliations

Authors

Contributions

LT: Conceptualization, Methodology, Data Curation, Writing-Original Draft, Funding acquisition. ZY: Formal analysis, Data Curation, Writing-review and editing. WF: Data Curation, Writing-review and editing. WJ: Resources, Writing-review and editing. CC: Writing-review and editing, Funding acquisition. ZY: Writing-review and editing. JC: Supervision, Writing-review and editing, Funding acquisition. HZ: Funding acquisition, Writing-review and editing. ZX: Supervision, Writing-review and editing. LS: Supervision, Writing-review and editing. SC: Supervision, Writing-review and editing, Funding acquisition.

Corresponding authors

Correspondence to Tao Liu, Xiaochun Zhong or Chengming Sun.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Zhao, Y., Wu, F. et al. The estimation of wheat tiller number based on UAV images and gradual change features (GCFs). Precision Agric 24, 353–374 (2023). https://doi.org/10.1007/s11119-022-09949-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-022-09949-5

Keywords

Navigation