Skip to main content
Log in

Bayesian Projections of the Amur and Selenga River Runoff Changes in the 21st Century Based on CMIP6 Model Ensemble Simulations

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The analysis is carried out for changes in runoff of the Amur and Selenga rivers in the 21st century according to the CMIP6 (Coupled Model Intercomparison Project, Phase 6) climate model ensemble simulations using the Bayesian approach versus stream gage data on annual runoff and GPCP-2.3 dataset on annual precipitation over catchments on different timescales. For both catchments, significant intermodel differences are associated with the projections of multiyear mean runoff and interannual variability. The intermodel distribution of Bayesian weights indicates a high role of uncertainty related to initial conditions for model simulations. There is a positive trend in total runoff in the Amur River basin in the 21st century under all analyzed anthropogenic forcing scenarios. For total runoff of the Selenga River, there are no trends in the 21st century for all analyzed scenarios. No significant trends for the Amur and Selenga surface runoff were revealed for all algorithms for considering Bayesian weights and all anthropogenic forcing scenarios. At the same time, significant interdecadal variations in the interannual variability of runoff were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. M. M. Arzhanov, A. V. Eliseev, P. F. Demchenko, I. I. Mokhov, and V. Ch. Khon, "Simulation of Thermal and Hydrological Regimes of Siberian River Watersheds under Permafrost Conditions from Reanalysis Data," Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 44 (2008) [Izv., Atmos. Oceanic Phys., No. 1, 44 (2008)].

    Article  Google Scholar 

  2. K. Arpe, L. Bengtsson, G. S. Golitsyn, I. I. Mokhov, V. A. Semenov, and P. V. Sporyshev, "Analysis and Modeling of the Hydrological Regime Variations in the Caspian Sea Basin," Dokl. Akad. Nauk, No. 2, 366 (1999) [Dokl. Earth Sci., No. 4, 366 (1999)].

  3. K. Arpe, L. Bengtsson, G. S. Golitsyn, L. K. Efimova, I. I. Mokhov, V. A. Semenov, and V. Ch. Khon, "Variations in a Hydrological Cycle at the Lake Ladoga Catchment and the Neva Runoff in the 20th and 21st Centuries as Analyzed by a Global Climate Model," Meteorol. Gidrol., No. 12 (2000) [Russ. Meteorol. Hydrol., No. 12 (2000)].

  4. A. N. Gelfan, A. S. Kalugin, and Yu. G. Motovilov, "Assessing Amur Water Regime Variations in the XXI Century with Two Methods Used to Specify Climate Projections in River Runoff Formation Model," Vodnye Resursy, No. 3, 45 (2018) [Water Resour., No. 3, 45 (2018)].

    Article  Google Scholar 

  5. A. V. Eliseev, M. M. Arzhanov, P. F. Demchenko, and I. I. Mokhov, "Changes in Climatic Characteristics of Northern Hemisphere Extratropical Land in the 21st Century: Assessments with the IAP RAS Climate Model," Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 45 (2009) [Izv., Atmos. Oceanic Phys., No. 3, 45 (2009)].

    Article  Google Scholar 

  6. A. V. Eliseev and V. A. Semenov, "Arctic Climate Changes in the 21st Century: Ensemble Model Estimates Accounting for Realism in Present-day Climate Simulation," Dokl. Akad. Nauk, No. 2, 471 (2016) [Dokl. Earth Sci., No. 1, 471 (2016)].

  7. I. L. Kalyuzhnyi and S. A. Lavrov, "Basic Physical Processes and Regularities of Winter and Spring River Runoff Formation under Climate Warming Conditions," Meteorol. Gidrol., No. 1 (2012) [Russ. Meteorol. Hydrol., No. 1, 37 (2012)].

    Article  Google Scholar 

  8. O. V. Kibanova, A. V. Eliseev, I. I. Mokhov, and V. Ch. Khon, "Variations in the Duration of the Navigation Period along the Northern Sea Route in the 21st Century Based on Simulations with an Ensemble of Climatic Models: Bayesian Estimates," Dokl. Akad. Nauk, No. 1, 481 (2018) [Dokl. Earth Sci., No. 1, 481 (2018)].

  9. O. Yu. Marchenko, V. I. Mordvinov, and T. V. Berezhnykh, "Extreme Water Content of the Selenga River and Summertime Atmospheric Circulation Features," Meteorol. Gidrol., No. 10 (2012) [in Russian].

  10. V. P. Meleshko, G. S. Golitsyn, E. M. Volodin, V. Ya. Galin, V. A. Govorkova, A. V. Meshcherskaya, I. I. Mokhov, T. V. Pavlova, and P. V. Sporyshev, "Calculation of Water Balance Components over the Caspian Sea Watershed with a Set of Atmospheric General Circulation Models," Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 34 (1998) [Izv., Atmos. Oceanic Phys., No. 4, 34 (1998)].

    Google Scholar 

  11. V. P. Meleshko, V. A. Govorkova, V. M. Kattsov, S. P. Malevskii-Malevich, E. D. Nadezhina, P. V. Sporyshev, G. S. Golitsyn, P. F. Demchenko, A. V. Eliseev, I. I. Mokhov, V. A. Semenov, and V. C. Khon, "Anthropogenic Climate Change in Russia in the Twenty-First Century: An Ensemble of Climate Model Projections," Meteorol. Gidrol., No. 4 (2004) [Russ. Meteorol. Hydrol., No. 4 (2004)].

  12. V. M. Moreido and A. S. Kalugin, "Assessing Possible Changes in Selenga R. Water Regime in the XXI Century Based on a Runoff Formation Model," Vodnye Resursy, No. 3, 44 (2017) [Water Resour., No. 3, 44 (2017)].

    Article  Google Scholar 

  13. I. I. Mokhov, "Hydrological Anomalies and Tendencies of Change in the Basin of the Amur River under Global Warming," Dokl. Akad. Nauk, No. 5, 455 (2014) [Dokl. Earth Sci., No. 2, 455 (2014)].

  14. I. I. Mokhov, "Extreme Atmospheric and Hydrological Phenomena in Russian Regions: Relationship with the Pacific Decadal Oscillation," Dokl. Akad. Nauk, No. 2, 500 (2021) [Dokl. Earth Sci., No. 2, 500 (2021)].

  15. I. I. Mokhov, P. F. Demchenko, A. V. Eliseev, V. Ch. Khon, and D. V. Khvorost’yanov, "Estimation of Global and Regional Climate Changes during the 19th–21st Centuries on the Basis of the IAP RAS Model with Consideration for Anthropogenic Forcing," Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 38 (2002) [Izv., Atmos. Oceanic Phys., No. 5, 38 (2002)].

    Google Scholar 

  16. I. I. Mokhov, A. V. Eliseev, P. F. Demchenko, V. Ch. Khon, M. G. Akperov, M. M. Arzhanov, A. A. Karpenko, V. A. Tikhonov, A. V. Chernokulsky, and E. V. Sigaeva, "Climate Changes and Their Assessment Based on the IAP RAS Global Model Simulations," Dokl. Akad. Nauk, No. 2, 402 (2005) [Dokl. Earth Sci., No. 4, 402 (2005)].

  17. I. I. Mokhov and V. Ch. Khon, "Hydrological Regime in Siberian River Basins: Model Estimates of Changes in the 21st Century," Meteorol. Gidrol., No. 8 (2002) [Russ. Meteorol. Hydrol., No. 8 (2002)].

  18. I. I. Mokhov, V. Ch. Khon, A. V. Timazhev, A. V. Chernokulsky, and V. A. Semenov, "Hydrological Anomalies and Trends in the Amur River Basin due to Climate Change," in Extreme Floods in the Amur River Basin: Causes, Forecasts, Recommendations (Roshydromet, Moscow, 2014) [in Russian].

    Google Scholar 

  19. N. N. Romanovskii, S. N. Buldovich, G. S. Tipenko, D. O. Sergeev, M. V. Kasymskaya, and A. V. Gavrilov, "Estimation of the Influence of Climate Changes on Surface Runoff by Simulation of Thermal Interaction between Groundwater and Permafrost: A Case Study for the Upper Lena Watershed," Kriosfera Zemli, No. 1, 13 (2009) [in Russian].

  20. N. L. Frolova, P. A. Belyakova, V. Yu. Grigor’ev, A. A. Sazonov, and L. V. Zotov, "Many-year Variations of River Runoff in the Selenga Basin," Vodnye Resursy, No. 3, 44 (2017) [Water Resour., No. 3, 44 (2017)].

    Article  Google Scholar 

  21. V. Ch. Khon and I. I. Mokhov, "The Hydrological Regime of Large River Basins in Northern Eurasia in the XX–XXI Centuries," Vodnye Resursy, No. 1, 39 (2012) [Water Resour., No. 1, 39 (2012)].

    Article  Google Scholar 

  22. I. A. Shiklomanov, V. Yu. Georgievskii, A. L. Shalygin, et al., "Prognostic Assessments of Runoff Changes Based on Climate Scenarios," in Water Resources of Russia and Their Use (GGI, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  23. R. F. Adler, M. R. P. Sapiano, G. J. Huffman, J. Wang, G. Gu, D. Bolvin, L. J. V. Chiu, U. Schneider, A. Becker, E. Nelkin, P. Xie, R. Ferraro, and D.-B. Shin, "The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation," Atmosphere, No. 4, 9 (2018).

  24. M. M. Arzhanov, A. V. Eliseev, and I. I. Mokhov, "A Global Climate Model Based Bayesian Climate Projection for Northern Extra-tropical Land Areas," Glob. Planet. Change, 86–87 (2012).

    Article  Google Scholar 

  25. S. Berezovskaya, D. Yang, and D. L. Kane, "Compatibility Analysis of Precipitation and Runoff Trends over the Large Siberian Watersheds," Geophys. Res. Lett., No. 21, 31 (2004).

  26. G. J. Boer, D. M. Smith, C. Cassou, F. Doblas-Reyes, G. Danabasoglu, B. Kirtman, Y. Kushnir, M. Kimoto, G. Meehl, R. Msadek, W. Mueller, K. Taylor, F. Zwiers, M. Rixen, Y. Ruprich-Robert, and R. Eade, "The Decadal Climate Prediction Project (DCPP) Contribution to CMIP6," Geosci. Model Devel., No. 10, 9 (2016).

    Article  Google Scholar 

  27. A. Dai and K. E. Trenberth, "Estimates of Freshwater Discharge from Continents: Latitudinal and Seasonal Variations," J. Hydrology, No. 12, 3 (2002).

    Article  Google Scholar 

  28. D. Gerten, S. Rost, W. von Bloh, and W. Lucht, "Causes of Change in 20th Century Global River Discharge," Geophys. Res. Lett., No. 20, 35 (2004).

  29. S. T. Graham, J. S. Famiglietti, and D. R. Maidment, "Five-minute, 1/2°, and l° Data Sets of Continental Watersheds and River Networks for Use in Regional and Global Hydrologic and Climate System Modeling Studies," Water Resour. Res., No. 2, 35 (1999).

    Article  Google Scholar 

  30. E. Hawkins and R. Sutton, "The Potential to Narrow Uncertainty in Regional Climate Predictions," Bull. Amer. Meteorol. Soc., No. 8, 90 (2009).

    Article  Google Scholar 

  31. J. A. Hoeting, D. Madigan, A. E. Raftery, and C. Volinsky, "Bayesian Model Averaging: A Tutorial," Stat. Sci., No. 4, 14 (1999).

    Article  Google Scholar 

  32. V. M. Kattsov, J. E. Walsh, W. L. Chapman, V. A. Govorkova, T. Pavlova, and X. Zhang, "Simulation and Projection of Arctic Freshwater Budget Components by the IPCC AR4 Global Climate Models," J. Hydrology, No. 3, 8 (2007).

    Article  Google Scholar 

  33. R. Knutti, "The End of Model Democracy?", Climate Change, No. 3–4, 102 (2010).

  34. R. Knutti, J. Sedlacek, B. M. Sanderson, R. Lorenz, E. Fischer, and V. Eyring, "A Climate Model Projection Weighting Scheme Accounting for Performance and Interdependence," Geophys. Res. Lett., No. 4, 44 (2017).

    Google Scholar 

  35. F. Lehner, C. Deser, N. Maher, J. Marotzke, E. Fischer, L. Brunner, R. Knutti, and E. Hawkins, "Partitioning Climate Projection Uncertainty with Multiple Large Ensembles and CMIP5/6," Earth Syst. Dyn., No. 2, 11 (2020).

    Article  Google Scholar 

  36. S. S. Leroy, "Detecting Climate Signals: Some Bayesian Aspects," J. Climate, No. 4, 11 (1998).

    Article  Google Scholar 

  37. V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press) [in press].

  38. G. A. Meehl, L. Goddard, G. Boer, R. Burgman, G. Branstator, C. Cassou, S. Corti, G. Danabasoglu, F. Doblas-Reyes, E. Hawkins, A. Karspeck, M. Kimoto, A. Kumar, D. Matei, J. Mignot, R. Msadek, A. Navarra, H. Pohlmann, M. Rienecker, T. Rosati, E. Schneider, Doug M. Smith, R. Sutton, H. Teng, G. V. Oldenborgh, G. Vecchi, and S. Yeager, "Decadal Climate Prediction: An Update from the Trenches," Bull. Amer. Meteorol. Soc., No. 2, 95 (2014).

    Article  Google Scholar 

  39. J. D. Milliman, K. L. Farnsworth, P. D. Jones, Kehui Xu, and L. Smith, "Climatic and Anthropogenic Factors Affecting River Discharge to the Global Ocean, 1951–2000," Glob. Planet. Change, No. 3–4, 62 (2008).

    Article  Google Scholar 

  40. I. I. Mokhov and M. R. Parfenova, "Changes of the Selenga River Runoff in the Lake Baikal Basin and Their Relationship to El Nino Phenomena," in Research Activities in Atmospheric and Oceanic Modelling, Ed. by E. Astakhova, Rep. No. 49, WCRP Rep. No. 12, S. 2 (2019).

  41. T. F. Stocker, D. Qin, G.-K. Plattner, L. V. Alexander, S. K. Allen, N. L. Bindoff, F.-M. Breon, J. A. Church, U. Cubasch, S. Emori, P. Forster, P. Friedlingstein, N. Gillett, J. M. Gregory, D. L. Hartmann, E. Jansen, B. Kirtman, R. Knutti, K. Krishna Kumar, P. Lemke, J. Marotzke, V. Masson-Delmotte, G. A. Meehl, I. I. Mokhov, S. Piao, V. Ramaswamy, D. Randall, M. Rhein, M. Rojas, C. Sabine, D. Shindell, L. D. Talley, D. G. Vaughan, and S.-P. Xie, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA, 2013).

  42. Q. Tang and D. P. Lettenmaier, "21st Century Runoff Sensitivities of Major Global River Basins," Geophys. Res. Lett., No. 6, 39 (2012).

  43. C. Tebaldi and R. Knutti, "The Use of the Multi-model Ensemble in Probabilistic Climate Projections," Phil. Trans. Roy. Soc. A, No. 1857, 364 (2007).

  44. H. von Storch and F. W. Zwiers, Statistical Analysis in Climate Research (Cambridge Univ. Press., Cambridge, 2003).

    Google Scholar 

  45. L. Warszawski, K. Frieler, V. Huber, F. Piontek, O. Serdeczny, and J. Schewe, "The Inter-sectoral Impact Model Intercomparison Project (ISI-MIP): Project Framework," Proc. Nat. Acad. Sci., 111 (2014).

    Article  Google Scholar 

  46. A. P. Weigel, R. Knutti, M. A. Liniger, and C. Appenzeller, "Risks of Model-weighting in Multimodel Climate Projections," J. Climate, No. 15, 23 (2010).

    Article  Google Scholar 

  47. H. Yang, F. Zhou, S. Piao, M. Huang, A. Chen, P. Ciais, Y. Li, X. Lian, S. Peng, and Z. Zeng, "Regional Patterns of Future Runoff Changes from Earth System Models Constrained by Observation," Geophys. Res. Lett., No. 11, 44 (2017).

    Article  Google Scholar 

  48. J. Yin, P. Gentine, S. Zhou, S. Sullivan, R. Wang, Y. Zhang, and S. Guo, "Large Increase in Global Storm Runoff Extremes Driven by Climate and Anthropogenic Changes," Nature Commun., No. 1, 9 (2018).

    Article  Google Scholar 

  49. X. Zhang, Q. Tang, X. Zhang, and D. P. Lettenmaier, "Runoff Sensitivity to Global Mean Temperature Change in the CMIP5 Models," Geophys. Res. Lett., No. 15, 41 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Eliseev.

Additional information

Translated from Meteorologiya i Gidrologiya, 2022, No. 5, pp. 64-82. https://doi.org/10.52002/0130-2906-2022-5-64-82.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipavskii, A.S., Eliseev, A.V. & Mokhov, I.I. Bayesian Projections of the Amur and Selenga River Runoff Changes in the 21st Century Based on CMIP6 Model Ensemble Simulations. Russ. Meteorol. Hydrol. 47, 370–384 (2022). https://doi.org/10.3103/S1068373922050065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373922050065

Keywords

Navigation