Skip to main content
Log in

Phosphorus Transfer Behaviors Induced by CaF2–TiO2–CaO Fluxes in EH36 Shipbuilding Steel Subject to High Heat Input Submerged Arc Welding

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Phosphorus transfer behavior has been systematically investigated by submerged arc welding of EH36 shipbuilding steel with CaF2–TiO2–CaO fluxes. Dephosphorization could be induced when the CaO content is higher than 15.7 mass pct; otherwise, phosphorus uptake may occur. Coupling actual welding process with thermodynamic calculations, it is found that the major driving force enabling phosphorus transfer is largely governed by the activity difference between hypothetical P2O5 in the flux and that equilibrated with the weld metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted from Ref. [38]

References

  1. C. Wang and J. Zhang: Acta Metall. Sin., 2021, vol. 57, pp. 1126–40.

    CAS  Google Scholar 

  2. X. Zou, D. Zhao, J. Sun, C. Wang, and H. Matsuura: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 481–89.

    Article  Google Scholar 

  3. J. Jorge, L. de Souza, E. Marouco, O. dos Santos Filho, and J. Diniz: Weld. Int., 2017, vol. 31, pp. 499–508.

  4. B. Kim, S. Uhm, C. Lee, J. Lee, and Y. An: J. Eng. Mater. Technol., 2005, vol. 127, pp. 204–13.

    Article  CAS  Google Scholar 

  5. M. Zhong, H. Matsuura, and F. Tsukihashi: Mater. Trans., 2015, vol. 56, pp. 1192–98.

    Article  CAS  Google Scholar 

  6. J. Stewart, J. Charles, and E. Wallach: Mater. Sci. Technol., 2000, vol. 16, pp. 275–82.

    Article  CAS  Google Scholar 

  7. M. Zhong, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1745–52.

    Article  Google Scholar 

  8. C. Natalie, D. Olson, and M. Blander: Annu. Rev. Mater. Sci., 1986, vol. 16, pp. 389–413.

    Article  CAS  Google Scholar 

  9. J. Zhang, J. Leng, and C. Wang: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 2083–87.

    Article  Google Scholar 

  10. J. Zhang, T. Coetsee, and C. Wang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 16–21.

    Article  Google Scholar 

  11. J. Zhang, T. Coetsee, H. Dong, and C. Wang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 1805–12.

    Article  Google Scholar 

  12. C. Dallam, S. Liu, and D. Olson: Weld. J., 1985, vol. 64, pp. 140–51.

    Google Scholar 

  13. A. Mills, G. Thewlis, and J. Whiteman: Mater. Sci. Technol., 1987, vol. 3, pp. 1051–61.

    Article  CAS  Google Scholar 

  14. T. Coetsee, R.J. Mostert, P.G.H. Pistorius, and P.C. Pistorius: J. Mater. Res. Technol., 2021, vol. 11, pp. 2021–36.

    Article  CAS  Google Scholar 

  15. J. Indacochea, M. Blander, N. Christensen, and D. Olson: Metall. Trans. B., 1985, vol. 16B, pp. 237–45.

    Article  CAS  Google Scholar 

  16. B.M. Thaddeus: Binary Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1990.

  17. G. Hassal, P. Jackaman, and R. Hawkins: Ironmak. Steelmak., 1991, vol. 18, pp. 359–69.

    Google Scholar 

  18. F. Pahlevani, S. Kitamura, H. Shibata, and N. Maruoka: ISIJ Int., 2010, vol. 50, pp. 822–29.

    Article  CAS  Google Scholar 

  19. C. Chai and T. Eager: Weld. J., 1982, vol. 61, pp. 229–32.

    Google Scholar 

  20. J. Zhang, T. Coetsee, H. Dong, and C. Wang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 1953–57.

    Article  Google Scholar 

  21. X. Yuan, M. Zhong, Y. Wu, and C. Wang: Metall. Mater. Trans. B., 2022, vol. 53B, pp. 656–61.

    Article  Google Scholar 

  22. J. Indacochea and D. Olson: J. Mater. Energy Syst., 1983, vol. 5, pp. 139–48.

    Article  CAS  Google Scholar 

  23. L.H. Hillert: Acta Polytech. Scand., Chemistry Including Metallurgy, 1970, Series no. 90.

  24. M. Zhong, H. Matsuura, and F. Tsukihashi: ISIJ Int., 2015, vol. 55, pp. 2283–88.

    Article  CAS  Google Scholar 

  25. J. Zhang, T. Coetsee, H. Dong, and C. Wang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 885–90.

    Article  Google Scholar 

  26. T. Lau, G. Weatherly, and A. McLean: Weld. J., 1985, vol. 64, pp. 343–47.

    Google Scholar 

  27. C.S. Chai and T.W. Eagar: Metall. Trans. B., 1981, vol. 12B, pp. 539–47.

    Article  CAS  Google Scholar 

  28. X. Xie, M. Zhong, T. Zhao, and C. Wang: J. Iron. Steel Res. Int., 2022, vol. 343. https://doi.org/10.1007/s42243-022-00814-3

  29. J. Zhang, T. Coetsee, H. Dong, and C. Wang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 1350–54.

    Article  Google Scholar 

  30. U. Mitra and T. Eagar: Metall. Trans. A., 1984, vol. 15, pp. 217–27.

    Article  Google Scholar 

  31. U. Mitra and T. Eagar: Metall. Trans. B., 1991, vol. 22B, pp. 73–81.

    Article  CAS  Google Scholar 

  32. H. Suito and R. Inoue: ISIJ Int., 1995, vol. 35, pp. 258–65.

    Article  CAS  Google Scholar 

  33. E.T. Turkdogan: ISIJ Int., 2001, vol. 41, pp. 930–32.

    Article  CAS  Google Scholar 

  34. M. Hino and K. Ito: Thermodynamic Data for Steelmaking, Tohoku University, Sendai, 2010.

    Google Scholar 

  35. C. Chen, H. Xue, H. Peng, L. Yan, L. Zhi, and S. Wang: J. Nanomater., 2014, vol. 2014, pp. 1–7.

    Google Scholar 

  36. S.K. Ghosh and S.J. Chopra: Ind. Eng. Chem. Process Des. Dev., 1975, vol. 14, pp. 304–08.

    Article  CAS  Google Scholar 

  37. D. Tao: Nonferrous Met., 1993, vol. 03, pp. 59–63.

    Google Scholar 

  38. D.W. Cho, W.H. Song, M.H. Cho, and S.J. Na: J. Mater. Process. Technol., 2013, vol. 213, pp. 2278–91.

    Article  Google Scholar 

  39. X. Jian and C. Wu: Acta Metall. Sin., 2016, vol. 52, pp. 1467–76.

    CAS  Google Scholar 

Download references

The authors sincerely thank the National Natural Science Foundation of China (Grant Nos. U20A20277, 52150610494, 52104295, 52011530180 and 52050410341), and Research Fund for Central Universities (Grant Nos. N2125016 and N2025025).

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, M., Li, T., Basu, S. et al. Phosphorus Transfer Behaviors Induced by CaF2–TiO2–CaO Fluxes in EH36 Shipbuilding Steel Subject to High Heat Input Submerged Arc Welding. Metall Mater Trans B 53, 2774–2778 (2022). https://doi.org/10.1007/s11663-022-02607-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02607-1

Navigation