Skip to main content
Log in

Group delay time of fermions in graphene through tilted potential barrier

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The group delay time of Dirac fermions subjected to a tilting barrier potential along the x-axis is investigated in graphene. We start by finding the eigenspinor solution of the Dirac equation and then relating it to incident, reflected, and transmitted beam waves. This relationship allows us to compute the group delay time in transmission and reflection by obtaining the corresponding phase shifts. We discovered that the barrier width, incident energy, and incident angle can all be used to modify the group delay time, and that the particles travel through the barrier at the Fermi velocity \( v_F \). Our findings also show that the transmission group delay might be controlled, and that gate voltage control could be useful in graphene-based tilting barriers.

Graphical abstract

FIG. 1. (color online) The group delay time in transmission tt/t0 as a function of the barrier width d for V0 = V1 = 80 meV, f = \(30^\circ \) , E = 20 meV (blue line), E = 25 meV (red line), and E = 30 meV (green line).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available on request from the corresponding author].

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  2. Y.B. Zhang, Y.W. Tan, H.L. Störmer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  3. J. Nilsson, A.H. Castro Neto, F. Guinea, N.M.R. Peres, Phys. Rev. B 76, 165416 (2007)

    Article  ADS  Google Scholar 

  4. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)

    Article  Google Scholar 

  5. Y. Lin, K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, P. Avouris, Nano Lett. 9, 422 (2009)

    Article  ADS  Google Scholar 

  6. J. Kedzierski, P. Hsu, P. Healey, P.W. Wyatt, C.L. Keast, M. Sprinkle, C. Berger, W.A. de Heer, IEEE Trans. Electron. Dev. 55, 2078 (2008)

    Article  ADS  Google Scholar 

  7. T.E. Hartman, J. Appl. Phys. 33, 3427 (1962)

    Article  ADS  Google Scholar 

  8. Z. Wu, K. Chang, J.T. Liu, X.J. Li, K.S. Chan, J. Appl. Phys. 105, 043702 (2009)

  9. V.S. Olkhovsky, E. Recami, Phys. Rep. 214, 339 (1992)

    Article  ADS  Google Scholar 

  10. F. Goos, H. Hänchen, Ann. Phys. 436, 333 (1947)

    Article  Google Scholar 

  11. X. Chen, J.-W. Tao, Y. Ban, Eur. Phys. J. B 79, 203 (2011)

    Article  ADS  Google Scholar 

  12. Y. Song, H.-C. Wu, Y. Guo, Appl. Phys. Lett. 100, 253116 (2012)

    Article  ADS  Google Scholar 

  13. X. Chen, P.-L. Zhao, X.-J. Lu, L.-G. Wang, Eur. Phys. J. B 86, 223 (2013)

    Article  ADS  Google Scholar 

  14. H. Bahlouli, E.B. Choubabi, A. El Mouhafid, A. Jellal, Solid State Commun. 151, 1309 (2011)

    Article  ADS  Google Scholar 

  15. M. Mekkaoui, R. El Kinani, A. Jellal, Mater. Res. Express 6, 085013 (2019)

    Article  ADS  Google Scholar 

  16. M.V. Berry, R.J. Modragon, Proc. R. Soc. Lond. Ser. A 412, 53 (1987)

    Article  ADS  Google Scholar 

  17. J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, C.W.J. Beenakker, Phys. Rev. Lett. 96, 246802 (2006)

    Article  ADS  Google Scholar 

  18. X. Chen, C.-F. Li, Y. Ban, Eur. Phys. J. B 62, 453 (2008)

    Article  ADS  Google Scholar 

  19. Yue Ban, Lin-Jun. Wang, Xi. Chen, J. Appl. Phys. 115, 173703 (2014)

    Article  ADS  Google Scholar 

  20. C.W.J. Beenakker, R.A. Sepkhanov, A.R. Akhmerov, J. Tworzydlo, Phys. Rev. Lett. 102, 146804 (2009)

    Article  ADS  Google Scholar 

  21. A.M. Steinberg, R.Y. Chiao, Phys. Rev. A 49, 3283 (1994)

    Article  ADS  Google Scholar 

  22. C.-F. Li, Phys. Rev. A 65, 066101 (2002)

    Article  ADS  Google Scholar 

  23. Yue Ban, Lin-Jun. Wang, Xi. Chen, J. Appl. Phys. 117, 164307 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the paper.

Corresponding author

Correspondence to Ahmed Jellal.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattasse, Y., Mekkaoui, M., Jellal, A. et al. Group delay time of fermions in graphene through tilted potential barrier. Eur. Phys. J. B 95, 128 (2022). https://doi.org/10.1140/epjb/s10051-022-00391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00391-0

Navigation