Skip to main content
Log in

Acoustic and Electrical Properties of Tight Rocks: A Comparative Study Between Experiment and Theory

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The acoustic-electrical (AE) response of subsurface hydrocarbon reservoirs is highly affected by rock heterogeneity. In particular, the characterization of the microstructure of tight (low-permeability) rocks can be aided by a joint interpretation of AE data. To this purpose, we evaluate cores from a tight-oil reservoir to obtain the rock mineralogy and pore structure by X-ray diffraction and casting thin sections. Then, ultrasonic and resistivity experiments are performed under different confining pressures to analyze the effects of pores, microcracks and mineralogy on the AE properties. We have developed acoustic and electrical models based on effective-medium theories, and the Cole–Cole and triple-porosity equations, to simulate the response to total and soft (crack) porosities and clay content. The results show that these properties play a significant role. Then, a 3D rock-physical template is built and calibrated by using the core samples and well-log data. The template is applied to tight-oil reservoirs to estimate the rock properties, which are validated with log data. The good match between the predictions and these data indicates that the model can effectively explain the effects of the heterogeneous microstructure on the AE data.

Article Highlights

  • Tight rock microstructure is analyzed with X-ray diffraction, thin sections and ultrasonic and electrical resistivity tests

  • Rock acoustic-electrical properties are obtained by the effective-medium and triple-porosity theories

  • Practical application is given based on an acoustic-electrical rock physics template

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Amalokwu K, Falcon-Suarez IH (2021) Effective medium modeling of pressure effects on the joint elastic and electrical properties of sandstones. J Petrol Sci Eng 202:108540

    Article  Google Scholar 

  • Anguy Y, Bernard D, Ehrlich R (1996) Towards realistic flow modelling. Creation and evaluation of two-dimensional simulated porous media: an image analysis approach. Surv Geophys 17(3):265–287

    Article  Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(5):4–62. https://doi.org/10.2118/942054-G

    Article  Google Scholar 

  • Attias E, Amalokwu K, Watts M, Falcon-Suarez IH, North L, Hu GW, Minshull TA (2020) Gas hydrate quantification at a pockmark offshore Norway from joint effective medium modelling of resistivity and seismic velocity. Mar Pet Geol 113:104151

    Article  Google Scholar 

  • Bakar WZW, Saaid IM, Ahmad MR, Amir Z, Mahat SQA (2019) Derivation of formation factor in shaly sandstone with geometry and clay conductivity effects. J Petrol Sci Eng 182:106359

    Article  Google Scholar 

  • Batzle M, Wang Z (1992) Seismic properties of pore fluids. Geophysics 57:1396–1408

    Article  Google Scholar 

  • Ba J, Ma R, Carcione J, Picotti S (2019) Ultrasonic wave attenuation dependence on saturation in tight oil siltstones. J Petrol Sci Eng 179:1114–1122. https://doi.org/10.1016/j.petrol.2019.04.099

    Article  Google Scholar 

  • Ba J, Xu W, Fu L, Carcione J, Zhang L (2017) Rock anelasticity due to patchy-saturation and fabric heterogeneity: a double-double porosity model of wave propagation. J Geophys Res Solid Earth 122(3):1949–1976. https://doi.org/10.1002/2016JB013882

    Article  Google Scholar 

  • Behmanesh H, Hamdi H, Clarkson CR, Thompson JM, Anderson DM (2018) Analytical modeling of linear flow in single-phase tight oil and tight gas reservoirs. J Petrol Sci Eng 171:1084–1098

    Article  Google Scholar 

  • Berryman JG (1980) Long-wavelength propagation in composite elastic media. J Acoust Soc Am 68(6):1809–1831

    Article  Google Scholar 

  • Berryman JG (1992) Single-scattering approximations for coefficients in Biot’s equations of poroelasticity. Acoust Soc Am J 91(2):551–571

    Article  Google Scholar 

  • Berryman JG (1995) Mixture theories for rock properties. Rock Phys Phase Relat A Handb Phys Constants 3:205–228

    Google Scholar 

  • Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498

    Article  Google Scholar 

  • Carcione JM (2014) Wavefields in real media. In: Theory and numerical simulation of wave propagation in anisotropic, anelastic, porous and electromagnetic media, 3rd edn. Amsterdam, Netherlands: Elsevier

  • Carcione JM, Ursin B, Nordskag JI (2007) Cross-property relations between electrical conductivity and the seismic velocity of rocks. Geophysics 72(5):E193–E204

    Article  Google Scholar 

  • Cilli P, Chapman M (2018) Modelling the elastic and electrical proper-ties of rocks with complex pore geometries. In: 80th annual international conference and exhibition, EAGE, extended abstracts. https://doi.org/10.3997/2214-4609.201801407

  • Cilli P, Chapman M (2020) The power-law relation between inclusion aspect ratio and porosity: implications for electrical and elastic modeling. J Geophys Res Solid Earth 125(5):1–25

    Article  Google Scholar 

  • Cilli P, Chapman M (2021) Linking elastic and electrical properties of rocks using cross-property DEM. Geophys J Int 225:1812–1823

    Article  Google Scholar 

  • Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics, vol. I: alternating current field. J Chem Phys 9:341–351

    Article  Google Scholar 

  • David EC, Zimmerman RW (2012) Pore structure model for elastic wave velocities in fluid‐saturated sandstones. J Geophys Res Solid Earth 117: B07210. https://doi.org/10.1029/2012JB009195

  • Dutilleul J, Bourlange S, Géraud Y, Stemmelen D (2020) Porosity, pore structure, and fluid distribution in the sediments entering the northern Hikurangi margin, New Zealand. J Geophys Res Solid Earth 125:e2020JB020330. https://doi.org/10.1029/2020JB020330

    Article  Google Scholar 

  • Falcon-Suarez IH, Amalokwu K, Delgado-Martin J, Callow B, Robert K, North L et al (2019) Comparison of stress-dependent geophysical, hydraulic and mechanical properties of synthetic and natural sandstones for reservoir characterization and monitoring studies. Geophys Prospect 67(4):784–803

    Article  Google Scholar 

  • Fan J, Shi J, Wan X, Xie Q, Wang C (2021) Classification evaluation method for Chang 7 oil group of Yanchang formation in Ordos basin. J Pet Explor Prod Technol 12(3):825–834

    Google Scholar 

  • Fliedner C, French ME (2021) Pore and mineral fabrics control the elastic wave velocities of metapelite with implications for subduction zone tomography. J Geophys Res Solid Earth 126:e2021JB022361. https://doi.org/10.1029/2021JB022361

    Article  Google Scholar 

  • Gabàs A, Macau A, Benjumea B, Queralt P, Ledo J, Figueras S, Marcuello A (2016) Joint audio-magnetotelluric and passive seismic imaging of the Cerdanya Basin. Surv Geophys 37:897–921. https://doi.org/10.1007/s10712-016-9372-4

    Article  Google Scholar 

  • Gao S, Yang Y, Liao G, Xiong W, Liu H, Shen R, An W (2022) Experimental research on inter-fracture asynchronous injection-production cycle for a horizontal well in a tight oil reservoir. J Petrol Sci Eng 208:109647

    Article  Google Scholar 

  • Ghasemi S, Khamehchiyan M, Taheri A, Nikudel MR, Zalooli A (2020) Crack evolution in damage stress thresholds in different minerals of granite rock. Rock Mech Rock Eng 53(3):1163–1178

    Article  Google Scholar 

  • Ghanizadeh A, Clarkson C, Aquino S, Ardakani O, Sanei H (2015) Petrophysical and geomechanical characteristics of Canadian tight oil and liquid-rich gas reservoirs: pore network and permeability characterization. Fuel 153:664–681. https://doi.org/10.1016/j.fuel.2015.03.020

    Article  Google Scholar 

  • Gomes OA, Yednak CAR, de Almeida RR, Teixeira-Souza RT, Evangelista LR (2017) Elastic anisotropy effects on the electrical responses of a thin sample of nematic liquid crystal. Phys Rev E 95(3):032704

    Article  Google Scholar 

  • Gomez CT, Dvorkin J, Vanorio T (2010) Laboratory measurements of porosity, permeability, resistivity, and velocity on Fontainebleau sandstones. Geophysics 75(6):E191–E204

    Article  Google Scholar 

  • Hacikoylu P, Dvorkin J, Mavko G (2006) Resistivity-velocity transforms revisited. Lead Edge 25(8):1006–1009

    Article  Google Scholar 

  • Han T, Best A, Sothcott J, MacGregor L (2011) Joint elastic-electrical properties of reservoir sandstones and their relationships with petrophysical parameters. Geophys Prospect 59:518–535

    Article  Google Scholar 

  • Han T, Clennell M, Cheng A, Pervukhina M (2016) Are self-consistent models capable of jointly modeling elastic velocity and elec-trical conductivity of reservoir sandstones? Geophysics 81(4):D377–D382. https://doi.org/10.1190/geo2015-0690.1

    Article  Google Scholar 

  • Han T, Wei Z, Li F (2020) How the effective pore and grain shapes are correlated in Berea sandstones: implications for joint elastic-electrical modeling. Geophysics 85(3):MR147–MR154

    Article  Google Scholar 

  • Han XH, Kuang LC, He Y, Tao G, Ke SZ (2005) A view of the experimental study on rock’electric property. Prog Geophys 20(2):348–356

    Google Scholar 

  • Hashin Z, Shtrikman S (1962) A variational approach to the theory of effective magnetic permeability of multiphase materials. J Appl Phys 33:3125–3131

    Article  Google Scholar 

  • Hashin Z, Shtrikman S (1963) A variational approach to the elastic behavior of multiphase materials. J Mech Phys Solids 11(2):127–140. https://doi.org/10.1016/0022-5096(63)90060-7

    Article  Google Scholar 

  • Heinson G (1999) Electromagnetic studies of the lithosphere and asthenosphere. Surv Geophys 20(3):229–255

    Article  Google Scholar 

  • Heise W, Ellis S (2016) On the coupling of geodynamic and resistivity models: a progress report and the way forward. Surv Geophys 37(1):81–107

    Article  Google Scholar 

  • Iqbal MA, Rezaee R, Smith G, Ekundayo JM (2021) Shale lithofacies controls on porosity and pore structure: an example from Ordovician Goldwyer formation, Canning basin, Western Australia. J Nat Gas Sci Eng 89:103888

    Article  Google Scholar 

  • Iwamori H, Ueki K, Hoshide T, Sakuma H, Ichiki M, Watanabe T et al (2021) Simultaneous analysis of seismic velocity and electrical conductivity in the crust and the uppermost mantle: a forward model and inversion test based on grid search. J Geophys Res Solid Earth 126:e2021JB022307. https://doi.org/10.1029/2021JB022307

    Article  Google Scholar 

  • Jensen EH, Gelius LJ, Johansen TA, Wang Z (2013) Consistent joint elastic-electrical differential effective-medium modelling of compacting reservoir sandstones. Geophys Prospect 61(4):788–802

    Article  Google Scholar 

  • Ji X, Wang H, Ge Y, Liang J, Xu X (2022) Empirical mode decomposition-refined composite multiscale dispersion entropy analysis and its application to geophysical well log data. J Petrol Sci Eng 208:109495

    Article  Google Scholar 

  • Kathel P, Mohanty KK (2013) Wettability alteration in a tight oil reservoir. Energy Fuels 27(11):6460–6468

    Article  Google Scholar 

  • Kazatchenko E, Markov M, Mousatov A (2004) Joint modeling of acoustic velocities and electrical conductivity from unified microstructure of rocks. J Geophys Res 109:B01202. https://doi.org/10.1029/2003JB002443

    Article  Google Scholar 

  • Kozlovskaya E, Hjelt SE (2000) Modeling of elastic and electrical properties of solid-liquid rock system with fractal microstructure. Phys Chem Earth Part A 25(2):195–200

    Article  Google Scholar 

  • Kumar S, Mendhe VA, Kamble AD, Varma AK, Mishra DK, Bannerjee M, Prasad AK (2019) Geochemical attributes, pore structures and fractal characteristics of Barakar shale deposits of Mand-Raigarh Basin, India. Mar Pet Geol 103:377–396

    Article  Google Scholar 

  • Leger M, Luquot L (2021) Importance of microstructure in carbonate rocks: laboratory and 3D-imaging petrophysical characterization. Appl Sci 11(9):3784

    Article  Google Scholar 

  • Leveaux J, Poupon A (1971) Evaluation of water saturation in shaly formations. Log Anal 12(04): 3–8

  • Lin R, Yu Z, Zhao J, Dai C, Sun Y, Ren L, Xie M (2022) Experimental evaluation of tight sandstones reservoir flow characteristics under CO2–Brine–Rock multiphase interactions: a case study in the Chang 6 layer, Ordos Basin. China Fuel 309:122167

    Article  Google Scholar 

  • Liu Q, Li P, Jin Z, Sun Y, Hu G, Zhu D, Liu J (2021) Organic-rich formation and hydrocarbon enrichment of lacustrine shale strata: a case study of Chang 7 Member. Sci China Earth Sci 65, 118–138. https://doi.org/10.1007/s11430-021-9819-y

  • Lu M, Cao H, Sun W, Yan X, Yang Z, Xu Y, Wang Z, Ouyang M (2019) Quantitative prediction of seismic rock physics of hybrid tight oil reservoirs of the Permian Lucaogou formation, Junggar Basin, Northwest China. J Asian Earth Sci 178:216–223

    Article  Google Scholar 

  • Ma R, Ba J, Carcione J, Zhou X, Li F (2019) Dispersion and attenuation of compressional waves in tight oil reservoirs: experiments and simulations. Appl Geophys 16(1):33–45. https://doi.org/10.1007/s11770-019-0748-3

    Article  Google Scholar 

  • Ma C, Zhao X, Yang T, Jiang W, Guo B, Han G, Zhu H (2021) Mineralogy, organic geochemistry, and microstructural characterization of lacustrine Shahejie Formation, Qikou Sag, Bohai Bay Basin: contribution to understanding microcosmic storage mechanism of shale oil. J Pet Sci Eng 209:109843

    Article  Google Scholar 

  • Mahanta B, Vishal V, Ranjith PG, Singh TN (2020) An insight into pore-network models of high-temperature heat-treated sandstones using computed tomography. J Nat Gas Sci Eng 77:103227

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook: tools for seismic analysis of porous media. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mansoor N, Slater L (2007) On the relationship between iron concentration and induced polarization in marsh soils. Geophysics 72(1):A1–A5

    Article  Google Scholar 

  • Nover G (2005) Electrical properties of crustal and mantle rocks–a review of laboratory measurements and their explanation. Surv Geophys 26(5):593–651

    Article  Google Scholar 

  • Ozotta O, Liu K, Gentzis T, Carvajal-Ortiz H, Liu B, Rafieepour S, Ostadhassan M (2021) Pore structure alteration of organic-rich shale with Sc-CO2 exposure: the Bakken formation. Energy Fuels 35(6):5074–5089

    Article  Google Scholar 

  • Pang M, Ba J, Carcione J, Picotti S, Zhou J, Jiang R (2019) Estimation of porosity and fluid saturation in carbonates from rock-physics templates based on seismic Q. Geophysics 84(6):M25–M36. https://doi.org/10.1190/geo2019-0031.1

    Article  Google Scholar 

  • Pang M, Ba J, Carcione J, Zhang L, Ma R, Wei Y (2021a) Seismic identification of tight-oil reservoirs by using 3D rock-physics templates. J Pet Sci Eng 201:108476

    Article  Google Scholar 

  • Pang M, Ba J, Carcione JM, Saenger EH (2021b) Elastic-electrical rock-physics template for the characterization of tight-oil reservoir rocks. Lithosphere 2021:3341849

    Article  Google Scholar 

  • Pelton WH, Ward SH, Hallof PG, Sill WR, Nelson PH (1978) Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics 43:588–609

    Article  Google Scholar 

  • Pride SR, Berryman JG, Commer M, Nakagawa S, Newman GA, Vasco DW (2017) Changes in geophysical properties caused by fluid injection into porous rocks: analytical models. Geophys Prospect 65(3):766–790

    Article  Google Scholar 

  • Revil A, Coperey A, Mao D, Abdulsamad F, Ghorbani A, Rossi M, Gasquet D (2018) Induced polarization response of porous media with metallic particles-part 8: influence of temperature and salinity. Geophysics 83(6):E435–E456

    Article  Google Scholar 

  • Shen H, Li X, Li Q (2022) Influence of the microstructure on stress-dependent P-wave anisotropy in sandstone. Geophys J Int 228(2):876–892

    Article  Google Scholar 

  • Siitari-Kauppi M, Lindberg A, Hellmuth KH, Timonen J, Väätäinen K, Hartikainen J, Hartikainen K (1997) The effect of microscale pore structure on matrix diffusion—a site-specific study on tonalite. J Contam Hydrol 26(1–4):147–158

    Article  Google Scholar 

  • Solano NA, Soroush M, Clarkson CR, Krause FF, Jensen JL (2017) Modeling core-scale permeability anisotropy in highly bioturbated “tight oil” reservoir rocks. Comput Geosci 21(3):567–593

    Article  Google Scholar 

  • Sun W, Ba J, Carcione JM (2016) Theory of wave propagation in partially saturated double-porosity rocks: a triple-layer patchy model. Geophys J Int 205(1):22–37. https://doi.org/10.1093/gji/ggv551

    Article  Google Scholar 

  • Sun H, Duan L, Liu L, Fan W, Fan D, Yao J, Zhao J (2019) The influence of micro-fractures on the flow in tight oil reservoirs based on pore-network models. Energies 12(21):4104

    Article  Google Scholar 

  • Vaughan PJ, Moore DE, Morrow CA, Byerlee JD (1986) Role of cracks in progressive permeability reduction during flow of heated aqueous fluids through granite. J Geophys Res Solid Earth 91(B7):7517–7530

    Article  Google Scholar 

  • Wang KW, Sun JM, Geng SC, Wu JL (2006) Percolation network study of shale effects on rock electrical properties under different salinity. Chin J Geophys 49(6):1710–1717

    Article  Google Scholar 

  • Wang S, Tan M, Wang X, Zhang L (2022) Microscopic response mechanism of electrical properties and saturation model establishment in fractured carbonate rocks. J Petrol Sci Eng 208:109429

    Article  Google Scholar 

  • Wu M, Gao K, Liu J, Song Z, Huang X (2022) Influence of rock heterogeneity on hydraulic fracturing: a parametric study using the combined finite-discrete element method. Int J Solids Struct 234:111293

    Article  Google Scholar 

  • Wu Y, Lin C, Yan W, Liu Q, Zhao P, Ren L (2020) Pore-scale simulations of electrical and elastic properties of shale samples based on multicomponent and multiscale digital rocks. Mar Pet Geol 117:104369

    Article  Google Scholar 

  • Zhang L, Ba J, Fu L, Carcione JM, Cao C (2019) Estimation of pore microstructure by using the static and dynamic moduli. Int J Rock Mech Min Sci 113:24–30

    Article  Google Scholar 

  • Zhang L, Ba J, Yin W, Sun W, Tang J (2017) Seismic wave propagation equations of conglomerate reservoirs: a triple-porosity structure model. Chin J Geophys (in Chinese) 60(3):1073–1087

    Google Scholar 

  • Zhang L, Ba J, Carcione JM (2021) Wave propagation in infinituple-porosity media. J Geophy Res Solid Earth 126(4):e2020JB021266

    Google Scholar 

  • Zhang L, Ba, J, Carcione JM, Wu C (2022) Seismic wave propagation in partially saturated rocks with a fractal distribution of fluid-patch size. J Geophy Res Solid Earth 127(2):e2021JB023809

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor in Chief and anonymous reviewers for their valuable comments. The authors appreciate the help of Dr. Han Xuehui for the experimental tests and helpful discussions. This work is supported by the National Natural Science Foundation of China (Grant No. 41974123, No. 42174161), the Jiangsu Innovation and Entrepreneurship Plan and the Jiangsu Province Science Fund for Distinguished Young Scholars (Grant No. BK20200021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ba.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: The geometrical factors (P, Q)

The coefficients P and Q for ellipsoidal inclusions are given in Berryman (1980) and Mavko et al. (2009),

$$\begin{array}{*{20}c} {P = \frac{1}{3}T_{1} ,} & {Q = \frac{1}{5}\left( {T_{2} - \frac{1}{3}T_{1} } \right)} \\ \end{array} ,$$
(13)

with the pertinent scalars T1 and T2 given by,

$$\begin{array}{*{20}c} {T_{1} = \frac{{3F_{1} }}{{F_{2} }}} & {T_{2} - \frac{1}{3}T_{1} = \frac{2}{{F_{3} }} + \frac{1}{{F_{4} }} + \frac{{F_{4} F_{5} + F_{6} F_{7} - F_{8} F_{9} }}{{F_{2} F_{4} }},} \\ \end{array}$$
(14)

where

$$F_{1} = 1 + G\left[ {\frac{3}{2}(g + \theta ) - J\left( {\frac{3}{2}g + \frac{5}{2}\theta - \frac{4}{3}} \right)} \right],$$
(15)
$$\begin{aligned} F_{2} = & 1 + G\left[ {1 + \frac{3}{2}(g + \theta ) - \frac{J}{2}\left( {\frac{3}{2}g + 5\theta } \right)} \right] + H\left( {3 - 4J} \right) \\ & + \frac{G}{2}\left( {G + 3H} \right)\left( {3 - 4J} \right)\left[ {g + \theta - J\left( {g - \theta + 2\theta^{2} } \right)} \right], \\ \end{aligned}$$
(16)
$$F_{3} = 1 + G\left[ {1 - (g + \frac{3}{2}\theta ) + J\left( {g + \theta } \right)} \right],$$
(17)
$$F_{4} = 1 + \frac{G}{4}\left[ {g + 3\theta - J\left( {g - \theta } \right)} \right],$$
(18)
$$F_{5} = G\left[ { - g + J\left( {g + \theta - \frac{4}{3}} \right) + H\theta \left( {3 - 4J} \right)} \right],$$
(19)
$$F_{6} = 1 + G\left[ {1 + g - J\left( {g + \theta } \right) + H\left( {1 - \theta } \right)\left( {3 - 4J} \right)} \right],$$
(20)
$$F_{7} = 2 + \frac{G}{4}\left[ {3g + 9\theta - J\left( {3g + 5\theta } \right)} \right] + H\theta \left( {3 - 4J} \right),$$
(21)
$$F_{8} = G\left[ {1 - 2J + \frac{g}{2}\left( {J - 1} \right) + \frac{\theta }{2}\left( {5J - 3} \right)} \right] + H\left( {1 - \theta } \right)\left( {3 - 4J} \right),$$
(22)
$$F_{9} = G\left[ {\left( {J - 1} \right)g - J\theta } \right] + H\theta \left( {3 - 4J} \right),$$
(23)

with G, H and J given by

$$G = \frac{{\mu_{i} }}{{\mu_{m} }} - 1,$$
(24)
$$H = \frac{1}{3}\left( {\frac{{K_{i} }}{{K_{m} }} - \frac{{\mu_{i} }}{{\mu_{m} }}} \right),$$
(25)
$$J = \left[ {\frac{{\left( {1 - 2v_{m} } \right)}}{{2\left( {1 - v_{m} } \right)}}} \right],$$
(26)

where Km, μm and vm are the bulk and shear moduli and Poisson’s ratio of the host phase, respectively, Ki, and μi are the bulk and shear moduli of the phase i, and

$$\theta = \left\{ \begin{aligned} \frac{\alpha }{{\left( {\alpha^{2} - 1} \right)^{3/2} }}\left[ {\alpha \left( {\alpha^{2} - 1} \right)^{1/2} - \cosh^{ - 1} \alpha } \right] \hfill \\ \frac{\alpha }{{\left( {1 - \alpha^{2} } \right)^{3/2} }}\left[ {\cos^{ - 1} \alpha - \alpha \left( {1 - \alpha^{2} } \right)^{1/2} } \right] \hfill \\ \end{aligned} \right\},$$
(27)

for prolate (α > 1) and oblate (α < 1) spheroids, respectively, the α is aspect ratio, and

$$g = \frac{{\alpha^{2} }}{{1 - \alpha^{2} }}\left( {3\theta - 2} \right),$$
(28)

Appendix 2: The dispersion equation

The dispersion equation is given in Sun et al. (2016) and Zhang et al. (2017). The plane-wave analysis was performed by substituting a time harmonic kernel \(e^{{i\left( {\omega t - k \cdot {\mathbf{x}}} \right)}}\) into Eq. (4). Then the complex wave number \(k\) can be obtained as

$$\left| {\begin{array}{*{20}c} {a_{11} k^{2} + b_{11} } & {a_{12} k^{2} + b_{12} } & {a_{13} k^{2} + b_{13} } & {a_{14} k^{2} + b_{14} } \\ {a_{21} k^{2} + b_{21} } & {a_{22} k^{2} + b_{22} } & {a_{23} k^{2} + b_{23} } & {a_{24} k^{2} + b_{24} } \\ {a_{31} k^{2} + b_{31} } & {a_{32} k^{2} + b_{32} } & {a_{33} k^{2} + b_{33} } & {a_{34} k^{2} + b_{34} } \\ {a_{41} k^{2} + b_{41} } & {a_{42} k^{2} + b_{42} } & {a_{43} k^{2} + b_{43} } & {a_{44} k^{2} + b_{44} } \\ \end{array} } \right| = 0,$$
(29)

and

$$\begin{aligned} a_{11} = A + 2N + \left( {Q_{1} \phi_{2} - Q_{2} \phi_{1} } \right)M_{0}^{{\left( {12} \right)}} + \left( {Q_{2} \phi_{3} - Q_{3} \phi_{2} } \right)M_{0}^{{\left( {23} \right)}} , \hfill \\ a_{12} = Q_{1} + \left( {Q_{1} \phi_{2} - Q_{2} \phi_{1} } \right)M_{1}^{{\left( {12} \right)}} + \left( {Q_{2} \phi_{3} - Q_{3} \phi_{2} } \right)M_{1}^{{\left( {23} \right)}} , \hfill \\ a_{13} = Q_{2} + \left( {Q_{1} \phi_{2} - Q_{2} \phi_{1} } \right)M_{2}^{{\left( {12} \right)}} + \left( {Q_{2} \phi_{3} - Q_{3} \phi_{2} } \right)M_{2}^{{\left( {23} \right)}} , \hfill \\ a_{14} = Q_{3} + \left( {Q_{1} \phi_{2} - Q_{2} \phi_{1} } \right)M_{3}^{{\left( {12} \right)}} + \left( {Q_{2} \phi_{3} - Q_{3} \phi_{2} } \right)M_{3}^{{\left( {23} \right)}} , \hfill \\ a_{21} = Q_{1} + \phi_{2} R_{1} M_{0}^{{\left( {12} \right)}} ,\quad a_{22} = R_{1} + \phi_{2} R_{1} M_{1}^{{\left( {12} \right)}} , \hfill \\ a_{23} = \phi_{2} R_{1} M_{2}^{{\left( {12} \right)}} ,\quad a_{24} = \phi_{2} R_{1} M_{3}^{{\left( {12} \right)}} , \hfill \\ a_{31} = Q_{2} - R_{2} \left( {\phi_{1} M_{0}^{{\left( {12} \right)}} - \phi_{3} M_{0}^{{\left( {23} \right)}} } \right),\quad a_{32} = - R_{2} \left( {\phi_{1} M_{1}^{{\left( {12} \right)}} - \phi_{3} M_{1}^{{\left( {23} \right)}} } \right), \hfill \\ a_{33} = R_{2} \left( {1 - \phi_{1} M_{2}^{{\left( {12} \right)}} + \phi_{3} M_{2}^{{\left( {23} \right)}} } \right),\quad a_{34} = R_{2} \left( { - \phi_{1} M_{3}^{{\left( {12} \right)}} + \phi_{3} M_{3}^{{\left( {23} \right)}} } \right), \hfill \\ a_{41} = Q_{3} - \phi_{2} R_{3} M_{0}^{{\left( {23} \right)}} ,\quad a_{42} = - \phi_{2} R_{3} M_{1}^{{\left( {23} \right)}} , \hfill \\ a_{43} = - \phi_{2} R_{3} M_{2}^{{\left( {23} \right)}} ,\quad a_{44} = R_{3} \left( {1 - \phi_{2} M_{3}^{{\left( {23} \right)}} } \right), \hfill \\ b_{11} = - \rho_{00} \omega^{2} + i\omega \left( {b_{1} + b_{2} + b_{3} } \right),\quad b_{12} = - \rho_{01} \omega^{2} - i\omega b_{1} , \hfill \\ b_{13} = - \rho_{02} \omega^{2} - i\omega b_{2} ,\quad b_{14} = - \rho_{03} \omega^{2} - i\omega b_{3} , \hfill \\ b_{21} = - \rho_{01} \omega^{2} - i\omega b_{1} ,\quad b_{22} = - \rho_{11} \omega^{2} + i\omega b_{1} ,b_{23} = b_{24} = 0, \hfill \\ b_{31} = - \rho_{02} \omega^{2} - i\omega b_{2} ,\quad b_{33} = - \rho_{22} \omega^{2} + i\omega b_{2} ,b_{32} = b_{34} = 0, \hfill \\ b_{41} = - \rho_{03} \omega^{2} - i\omega b_{3} ,\quad b_{44} = - \rho_{33} \omega^{2} + i\omega b_{3} ,b_{42} = b_{43} = 0, \hfill \\ \end{aligned}$$
(30)

where the Biot dissipation coefficients (Biot 1962 and Sun et al. 2016) and the permeabilities of the three phases (Vaughan et al. 1986 and Mavko et al. 2009),

$$ \begin{array}{*{20}l} {b_{1} = \phi_{1} \phi_{10} \frac{{\eta_{f}^{{}} }}{{\kappa_{1} }},} \hfill & {b_{2} = \phi_{2} \phi_{20} \frac{{\eta_{f}^{{}} }}{{\kappa_{2} }},} \hfill & {b_{3} = \phi_{3} \phi_{30} \frac{{\eta_{f}^{{}} }}{{\kappa_{3} }},} \hfill \\ {\kappa_{1} = {{DR}}_{12}^{2} \phi_{1}^{3} ,} \hfill & {\kappa_{2} = \frac{{\kappa_{0} \phi_{2}^{3} }}{{\left( {1 - \phi_{2} } \right)^{2} }},} \hfill & {\kappa_{3} = \frac{{\kappa_{0} \phi_{3}^{3} }}{{\left( {1 - \phi_{3}^{2} } \right)}},} \hfill \\ \end{array} $$
(31)

where D = 50 and κ0 = 75.54 mdarcy, and

$$\begin{aligned} S_{12} = & \frac{{ - \phi_{1} \phi_{2}^{2} R_{12}^{2} \omega \left( {\rho_{f} \omega \left( {1/5 + \phi_{10} /\phi_{20} } \right) + i\left( {\eta /\left( {5\kappa_{1} } \right) + \eta /\kappa_{2} } \right)\phi_{10} } \right)}}{3} - \phi_{2}^{2} R_{1} - \phi_{1}^{2} R_{2} , \\ S_{23} = & \frac{{ - \phi_{3} \phi_{2}^{2} R_{23}^{2} \omega \left( {\rho_{f} \omega \left( {1/5 + \phi_{30} /\phi_{20} } \right) + i\left( {\eta /\left( {5\kappa_{3} } \right) + \eta /\kappa_{2} } \right)\phi_{30} } \right)}}{3} - \phi_{3}^{2} R_{2} - \phi_{2}^{2} R_{3} , \\ M_{0}^{{\left( {12} \right)}} = & \frac{{\left( {Q_{1} \phi_{2} - Q_{2} \phi_{1} } \right)/S_{12} + \phi_{1} \phi_{3} R_{2} \left( {Q_{2} \phi_{3} - Q_{3} \phi_{2} } \right)/\left( {S_{12} S_{23} } \right)}}{{1 + \left( {\phi_{1} \phi_{3} R_{2} } \right)^{2} /\left( {S_{12} S_{23} } \right)}}, \\ M_{1}^{{\left( {12} \right)}} = & \frac{{\phi_{2} R_{1} /S_{12} }}{{1 + \left( {\phi_{1} \phi_{3} R_{2} } \right)^{2} /\left( {S_{12} S_{23} } \right)}}, \\ M_{2}^{{\left( {12} \right)}} = & \frac{{ - \phi_{1} R_{2} /S_{12} + \phi_{1} \phi_{3}^{2} R_{2}^{2} /\left( {S_{12} S_{23} } \right)}}{{1 + \left( {\phi_{1} \phi_{3} R_{2} } \right)^{2} /\left( {S_{12} S_{23} } \right)}},\quad M_{3}^{{\left( {12} \right)}} = \frac{{ - \phi_{1} \phi_{2} \phi_{3} R_{2} R_{3} /\left( {S_{12} S_{23} } \right)}}{{1 + \left( {\phi_{1} \phi_{3} R_{2} } \right)^{2} /\left( {S_{12} S_{23} } \right)}}, \\ M_{0}^{{\left( {23} \right)}} = & \left( { - M_{0}^{{\left( {12} \right)}} \phi_{1} \phi_{3} R_{2} + Q_{2} \phi_{3} - Q_{3} \phi_{2} } \right)/S_{23} ,\quad M_{1}^{{\left( {23} \right)}} = - M_{1}^{{\left( {12} \right)}} \phi_{1} \phi_{3} R_{2} /S_{23} , \\ M_{2}^{{\left( {23} \right)}} = & \left( { - M_{2}^{{\left( {12} \right)}} \phi_{1} \phi_{3} R_{2} + \phi_{3} R_{2} } \right)/S_{23} ,\quad M_{3}^{{\left( {23} \right)}} = \left( { - M_{3}^{{\left( {12} \right)}} \phi_{1} \phi_{3} R_{2} - \phi_{2} R_{3} } \right)/S_{23} . \\ \end{aligned}$$
(32)

The stiffness and density coefficients are

$$\begin{aligned} A = \left( {1 - \phi } \right)K_{s} - \frac{2}{3}N - \frac{{K_{s} }}{{K_{f} }}\left( {Q_{1} + Q_{2} + Q_{3} } \right),\quad N = \mu_{b} , \hfill \\ Q_{1} = \frac{{\phi_{1} \beta_{1} K_{s} }}{{\beta_{1} + \gamma }},\quad Q_{2} = \frac{{\phi_{2} K_{s} }}{1 + \gamma },\quad Q_{3} = \frac{{\phi_{3} K_{s} }}{{\beta_{1} \gamma + 1}}, \hfill \\ R_{1} = \frac{{\phi_{1} K_{f} }}{{{{\beta_{1} } \mathord{\left/ {\vphantom {{\beta_{1} } \gamma }} \right. \kern-\nulldelimiterspace} \gamma } + 1}},\quad R_{2} = \frac{{\phi_{2} K_{f} }}{{1 + {1 \mathord{\left/ {\vphantom {1 \gamma }} \right. \kern-\nulldelimiterspace} \gamma }}},\quad R_{3} = \frac{{\phi_{3} K_{f} }}{{{1 \mathord{\left/ {\vphantom {1 {\beta_{1} \gamma }}} \right. \kern-\nulldelimiterspace} {\beta_{1} \gamma }} + 1}}, \hfill \\ \gamma = \frac{{K_{s} }}{{K_{f} }}\frac{{\phi_{1} \beta_{1} + \phi_{2} + {{\phi_{3} } \mathord{\left/ {\vphantom {{\phi_{3} } {\beta_{2} }}} \right. \kern-\nulldelimiterspace} {\beta_{2} }}}}{{\left( {1 - \phi } \right) - {{K_{b} } \mathord{\left/ {\vphantom {{K_{b} } {K_{s} }}} \right. \kern-\nulldelimiterspace} {K_{s} }}}}, \hfill \\ \end{aligned}$$
(33)
$$\begin{aligned} \begin{array}{*{20}c} {\rho_{11} = \frac{1}{2}\phi_{1} \rho_{f} \left( {1 + \frac{1}{{\phi_{10} }}} \right),} & {\rho_{22} = \frac{1}{2}\phi_{2} \rho_{f} \left( {1 + \frac{1}{{\phi_{20} }}} \right),} & {\rho_{33} = \frac{1}{2}\phi_{3} \rho_{f} \left( {1 + \frac{1}{{\phi_{30} }}} \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\rho_{01} = \phi_{1} \rho_{f} - \rho_{11} ,} & {\rho_{02} = \phi_{2} \rho_{f} - \rho_{22} ,} & {\rho_{03} = \phi_{3} \rho_{f} - \rho_{33} ,} \\ \end{array} \hfill \\ \rho_{00} = v_{1} (1 - \phi_{10} )\rho_{s1} + v_{2} (1 - \phi_{20} )\rho_{s2} + v_{3} (1 - \phi_{30} )\rho_{sh} - \rho_{01} - \rho_{02} - \rho_{03} , \hfill \\ \end{aligned}$$
(34)

where Ks, Kb and Kf are the bulk moduli of the mineral mixture, skeleton and fluid, respectively, ρs1, ρs2 and ρsh are the mineral densities corresponding to the three phases, ρf is the fluid density, and

$$\begin{aligned} \beta_{1} = \frac{{Q_{1} R_{2} }}{{Q_{2} R_{1} }} = \frac{{\phi_{20} }}{{\phi_{10} }}\left[ {\frac{{{1 \mathord{\left/ {\vphantom {1 {K_{s1} }}} \right. \kern-\nulldelimiterspace} {K_{s1} }} - {{\left( {1 - \phi_{10} } \right)} \mathord{\left/ {\vphantom {{\left( {1 - \phi_{10} } \right)} {K_{b1} }}} \right. \kern-\nulldelimiterspace} {K_{b1} }}}}{{{1 \mathord{\left/ {\vphantom {1 {K_{s2} }}} \right. \kern-\nulldelimiterspace} {K_{s2} }} - {{\left( {1 - \phi_{20} } \right)} \mathord{\left/ {\vphantom {{\left( {1 - \phi_{20} } \right)} {K_{b2} }}} \right. \kern-\nulldelimiterspace} {K_{b2} }}}}} \right], \hfill \\ \beta_{2} = \frac{{Q_{2} R_{3} }}{{Q_{3} R_{2} }} = \frac{{\phi_{30} }}{{\phi_{20} }}\left[ {\frac{{{1 \mathord{\left/ {\vphantom {1 {K_{s2} }}} \right. \kern-\nulldelimiterspace} {K_{s2} }} - {{\left( {1 - \phi_{20} } \right)} \mathord{\left/ {\vphantom {{\left( {1 - \phi_{20} } \right)} {K_{b2} }}} \right. \kern-\nulldelimiterspace} {K_{b2} }}}}{{{1 \mathord{\left/ {\vphantom {1 {K_{sh} }}} \right. \kern-\nulldelimiterspace} {K_{sh} }} - {{\left( {1 - \phi_{30} } \right)} \mathord{\left/ {\vphantom {{\left( {1 - \phi_{30} } \right)} {K_{b3} }}} \right. \kern-\nulldelimiterspace} {K_{b3} }}}}} \right]. \hfill \\ \end{aligned}$$
(35)

where Kb1, Kb2 and Kb3 are the skeleton bulk moduli of the crack inclusions, host and clay inclusions, respectively, and Ks1, Ks2 and Ksh are the mineral bulk moduli corresponding to the three phases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, M., Ba, J., Carcione, J.M. et al. Acoustic and Electrical Properties of Tight Rocks: A Comparative Study Between Experiment and Theory. Surv Geophys 43, 1761–1791 (2022). https://doi.org/10.1007/s10712-022-09730-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-022-09730-3

Keywords

Navigation