Skip to main content
Log in

Electronic properties of normal and extended Hubbard model for bilayer cuprates

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using dynamical mean-field theory we explore the electronic properties of the bilayer Hubbard model. For realistic model parameters we find a large reduction of the bonding-antibonding splitting of pure and hole doped Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8 +\delta }\) bilayer superconductor due to sizable dynamical correlations. Our results reveal a remarkable layer-selective renormalization of the Cu-3d bands caused by the interplay of intralayer Coulomb interaction and layer polarization with emergent Landau–Fermi liquid electronic excitations. At finite repulsive interlayer Coulomb interaction we predict a continuous layer decoupling phenomenon with coexisting Landau–Fermi liquid and Mott localized electrons. The emergence of layer-selectivity is important for the ongoing debate of correlated two-fluid superconductivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: This is a purely computational work, and all the data related to this work is provided in the form of figures within this article.]

References

  1. S. Chakravarty, A. Sudbo, P.W. Anderson, S. Strong, Science 261, 337 (1993)

    Article  ADS  Google Scholar 

  2. A. Fuhrmann, D. Heilmann, H. Monien, Phys. Rev. B 73, 245118 (2006)

    Article  ADS  Google Scholar 

  3. M. Golor, T. Reckling, L. Classen, M.M. Scherer, S. Wessel, Phys. Rev. B 90, 195131 (2014)

    Article  ADS  Google Scholar 

  4. K. Bouadim, G.G. Batrouni, F. Hébert, R.T. Scalettar, Phys. Rev. B 77, 144527 (2008)

    Article  ADS  Google Scholar 

  5. H. Lee, Y.-Z. Zhang, H.O. Jeschke, R. Valentí, Phys. Rev. B 89, 035139 (2014)

    Article  ADS  Google Scholar 

  6. T.I. Vanhala, J.E. Baarsma, M.O.J. Heikkinen, M. Troyer, A. Harju, P. Törmä, Phys. Rev. B 91, 144510 (2015)

    Article  ADS  Google Scholar 

  7. X.-X. Huang, M. Claassen, E.W. Huang, B. Moritz, T.P. Devereaux, Phys. Rev. Lett. 124, 077601 (2020)

    Article  ADS  Google Scholar 

  8. M. Gall, N. Wurz, J. Samland, C.F. Chan, M. Köhl, Nature 589, 40 (2021)

    Article  ADS  Google Scholar 

  9. T.A. Maier, D.J. Scalapino, Phys. Rev. B 84, 180513(R) (2011)

    Article  ADS  Google Scholar 

  10. S. Capponi, C. Wu, S.-C. Zhang, Phys. Rev. B 70, 220505 (2004)

    Article  ADS  Google Scholar 

  11. H. Zhai, F. Wang, D.-H. Lee, Phys. Rev. B 80, 064517 (2009)

    Article  ADS  Google Scholar 

  12. See also, L. Craco, Phys. Rev. B 104, 064509 (2021) and references therein

  13. S.S. Kancharla, S. Okamoto, Phys. Rev. B 75, 193103 (2007)

    Article  ADS  Google Scholar 

  14. A.I. Liechtenstein, O. Gunnarsson, O.K. Andersen, R.M. Martin, Phys. Rev. B 54, 12505 (1996)

    Article  ADS  Google Scholar 

  15. L. Rademaker, S. Johnston, J. Zaanen, J. van den Brink, Phys. Rev. B 88, 235115 (2013)

    Article  ADS  Google Scholar 

  16. S. Karakuzu, S. Johnston, and T. A. Maier, arXiv:2107.13996 (unpublished)

  17. A.M. Fulterer, E. Arrigoni, J. Supercond. Nov. Magn. 25, 1769 (2012)

    Article  Google Scholar 

  18. L. Zou, T. Senthil, Phys. Rev. B 94, 115113 (2016)

    Article  ADS  Google Scholar 

  19. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  20. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  ADS  Google Scholar 

  21. M. Neumann, J. Nyéki, B. Cowan, J. Saunders, Science 317, 1356 (2007)

    Article  ADS  Google Scholar 

  22. Y. Sato, Y. Kawasugi, M. Suda, H.M. Yamamoto, R. Kato, Nano Lett. 17, 708 (2017)

    Article  ADS  Google Scholar 

  23. T. Senthil, Phys. Rev. B 78, 045109 (2008)

    Article  ADS  Google Scholar 

  24. R. V. Mishmash, I. González, R. G. Melko, O. I. Motrunich, and M. P. A. Fisher, Phys. Rev. B 91, 235140 (2015)

  25. S. Sen, N.S. Vidhyadhiraja, Phys. Rev. B 93, 155136 (2016)

    Article  ADS  Google Scholar 

  26. P. Haldar, M.S. Laad, S.R. Hassan, Phys. Rev. B 94, 081115(R) (2016)

    Article  ADS  Google Scholar 

  27. R.T. Scalettar, J.W. Cannon, D.J. Scalapino, R.L. Sugar, Phys. Rev. B 50, 13419 (1994)

    Article  ADS  Google Scholar 

  28. K. Jiang, C. Le, Y. Li, S. Qin, Z. Wang, F. Zhang, J. Hu, Phys. Rev. B 103, 045108 (2021)

    Article  ADS  Google Scholar 

  29. Q. Gao, H. Yan, J. Liu, P. Ai, Y. Cai, C. Li, X. Luo, C. Hu, C. Song, J. Huang, H. Rong, Y. Huang, Q. Wang, G. Liu, G. Gu, F. Zhang, F. Yang, S. Zhang, Q. Peng, Z. Xu, L. Zhao, T. Xiang, X.J. Zhou, Phys. Rev. B 101, 014513 (2020)

    Article  ADS  Google Scholar 

  30. As a side note we shall mentention that an intrinsic feature of the bilayer superconductor Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\) (Bi2212) is that there are two CuO\(_2\) planes in one structural unit separated by calcium. The interaction between the copper-oxide planes gives rise to bilayer splitting, i.e., two bonding-antibonding Fermi surface sheets, with different doping levels [26]

  31. A.A. Kordyuk, S.V. Borisenko, M. Knupfer, J. Fink, Phys. Rev. B 67, 064504 (2003)

    Article  ADS  Google Scholar 

  32. L. Craco, Phys. Rev. B 77, 125122 (2008)

    Article  ADS  Google Scholar 

  33. M.S. Laad, L. Craco, E. Müller-Hartmann, Phys. Rev. Lett. 91, 156402 (2003)

    Article  ADS  Google Scholar 

  34. L. Craco, M.S. Laad, E. Müller-Hartmann, Phys. Rev. Lett. 90, 237203 (2003)

    Article  ADS  Google Scholar 

  35. A. Koitzsch, S.V. Borisenko, A.A. Kordyuk, T.K. Kim, M. Knupfer, J. Fink, H. Berger, R. Follath, Phys. Rev. B 69, 140507(R) (2004)

    Article  ADS  Google Scholar 

  36. S.V. Borisenko, A.A. Kordyuk, T.K. Kim, S. Legner, K.A. Nenkov, M. Knupfer, M.S. Golden, J. Fink, H. Berger, and R. Follath Phys. Rev. B 66, 140509(R) (2002)

  37. The computations of the retarded Green’s functions and self-energies were performed using \(\eta =0.005\) eV with a \(k\)-point grid of \(900 \times 900\). Moreover, 500 frequency points were considered for the energy window from \(-5\) to 5 eV around \(E_F\) to ensure that all relevant electronic excitations are included

  38. R. Žitko, J. Bonča, T. Pruschke, Phys. Rev. B 80, 245112 (2009)

    Article  ADS  Google Scholar 

  39. D.L. Feng, N.P. Armitage, D.H. Lu, A. Damascelli, J.P. Hu, P. Bogdanov, A. Lanzara, F. Ronning, K.M. Shen, H. Eisaki, C. Kim, Z.-X. Shen, J.-I. Shimoyama, K. Kishio, Phys. Rev. Lett. 86, 5550 (2001)

    Article  ADS  Google Scholar 

  40. D. Fournier, G. Levy, Y. Pennec, J.L. McChesney, A. Bostwick, E. Rotenberg, R. Liang, W.N. Hardy, D.A. Bonn, I.S. Elfimov, A. Damascelli, Nature Phys. 6, 905 (2010)

    Article  ADS  Google Scholar 

  41. T.J. Reber, X. Zhou, N.C. Plumb, S. Parham, J.A. Waugh, Y. Cao, Z. Sun, H. Li, Q. Wang, J.S. Wen, Z.J. Xu, G. Gu, Y. Yoshida, H. Eisaki, G.B. Arnold, D.S. Dessau, Nat. Commun. 10, 5737 (2019)

    Article  ADS  Google Scholar 

  42. R.S. Markiewicz, J. Phys. and Chem. of Solids 58, 1179 (1997)

    Article  ADS  Google Scholar 

  43. D.J. Singh, Phys. Rev. B 52, 1358 (1995)

    Article  ADS  Google Scholar 

  44. A. Liebsch, A. Lichtenstein, Phys. Rev. Lett. 84, 1591 (2000)

    Article  ADS  Google Scholar 

  45. K.M. Shen, N. Kikugawa, C. Bergemann, L. Balicas, F. Baumberger, W. Meevasana, N.J.C. Ingle, Y. Maeno, Z.-X. Shen, A.P. Mackenzie, Phys. Rev. Lett. 99, 187001 (2007)

    Article  ADS  Google Scholar 

  46. For the particular case of graphene, see L. Craco, Phys. Rev. B 103, 075135 (2021) and references therein

  47. J. Bok, J. Bouvier, J. Supercond. Nov. Magn. 25, 657 (2012)

    Article  Google Scholar 

  48. R. S. Markiewicz, Tanmoy Das, and A. Bansil, Phys. Rev. B 86, 024511 (2012)

  49. L. Craco, S. Leoni, Phys. Rev. B 100, 115156 (2019)

    Article  ADS  Google Scholar 

  50. N. Trivedi, Nature Physics 4, 163 (2008)

    Article  ADS  Google Scholar 

  51. B. J. Ramshaw1, S. E. Sebastian, R. D. McDonald, J. Day, B. S. Tan, Z. Zhu, J. B. Betts, R. Liang, D. A. Bonn, W. N. Hardy, N. Harrison, Science 348, 317 (2015)

  52. Z.-Y. Song, X.-C. Jiang, Y.-Z. Zhang, Phys. Rev. B 102, 245124 (2020)

    Article  ADS  Google Scholar 

  53. See, M. Vandelli, J. Kaufmann, V. Harkov, A. I. Lichtenstein, K. Held, E. A. Stepanov, arXiv:2204.02116 (unpublished) and references therein

  54. M. J. Han, Xin Wang, C. A. Marianetti, and A. J. Millis, Phys. Rev. Lett. 107, 206804 (2011)

  55. A.I. Poteryaev, M. Ferrero, A. Georges, O. Parcollet, Phys. Rev. B 78, 045115 (2008)

    Article  ADS  Google Scholar 

  56. L. Craco, M.S. Laad, S. Leoni, Scientific Reports 7, 2632 (2017)

    Article  ADS  Google Scholar 

  57. Y. Ni, Y.-M. Quan, J. Liu, Y. Song, L.-J. Zou, Phys. Rev. B 103, 214510 (2021)

    Article  ADS  Google Scholar 

  58. P. Werner, A.J. Millis, Phys. Rev. Lett. 99, 126405 (2007)

    Article  ADS  Google Scholar 

  59. L. de’ Medici, Phys. Rev. B 83, 205112 (2011)

  60. L. de’Medici, J. Mravlje, A. Georges, Phys. Rev. Lett. 107, 256401 (2011)

    Article  ADS  Google Scholar 

  61. L. de’Medici, Phys. Rev. Lett. 118, 167003 (2017)

    Article  ADS  Google Scholar 

  62. M. Capone, Nat. Mater. 17, 855 (2018)

    Article  ADS  Google Scholar 

  63. F.B. Kugler, S.-S.B. Lee, A. Weichselbaum, G. Kotliar, J. von Delft, Phys. Rev. B 100, 115159 (2019)

    Article  ADS  Google Scholar 

  64. A. Mezio, R.H. McKenzie, Phys. Rev. B 100, 205134 (2019)

    Article  ADS  Google Scholar 

  65. C.-Y. Moon, npj Comput. Mater. 6, 147 (2020)

    Google Scholar 

  66. L. Fanfarillo, G. Giovannetti, M. Capone, E. Bascones, Phys. Rev. B 95, 144511 (2017)

    Article  ADS  Google Scholar 

  67. L. Fanfarillo, E. Bascones, Phys. Rev. B 92, 075136 (2015)

    Article  ADS  Google Scholar 

  68. J. Bardeen, Phys. Rev. Lett. 1, 399 (1958)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank Jörg Fink for interesting discussions as well as the Leibniz Institute for Solid State and Materials Research Dresden for hospitality in the early stages of this work. Acknowledgement is also made to CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Craco.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Craco, L. Electronic properties of normal and extended Hubbard model for bilayer cuprates. Eur. Phys. J. B 95, 125 (2022). https://doi.org/10.1140/epjb/s10051-022-00393-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00393-y

Navigation